Buch, Englisch, 72 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 137 g
Industrial Economics
Buch, Englisch, 72 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 137 g
Reihe: SpringerBriefs in Applied Sciences and Technology
ISBN: 978-981-15-6299-0
Verlag: Springer Nature Singapore
This book discusses utilizing Big Data and Machine Learning approaches in investigating five aspects of firm level innovation in manufacturing; (1) factors that determine the decision to innovate (2) the extent of innovation (3) characteristics of an innovating firm (4) types of innovation undertaken and (5) the factors that drive and enable different types of innovation. A conceptual model and a cost-benefit framework were developed to explain a firm’s decision to innovate. To empirically demonstrate these aspects, Big data and machine learning approaches were introduced in the form of a case study. The result of Big data analysis as an inferior method to analyse innovation data was also compared with the results of conventional statistical methods. The implications of the findings of the study for increasing the pace of innovation are also discussed.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Konstruktionslehre und -technik
- Wirtschaftswissenschaften Betriebswirtschaft Management Forschung & Entwicklung (F&E), Innovation
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Produktionstechnik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau Konstruktionslehre, Bauelemente, CAD
Weitere Infos & Material
Chapter 1: Introduction to innovation activities.- Chapter 2: The role of SME’s in innovation activities.- Chapter 3: Overview of innovation activities in Southeast Asia.- Chapter 4: From Linear model to Chain Linked model of innovation in reaching firm characteristics that facilitate and lowering the cost of innovation.- Chapter 5: Predicting level of innovation.- Chapter 6: Factors affecting the decision to innovate and related policies.