E-Book, Englisch, 192 Seiten
Aznar / Celma Pueyo / Calvo Lopez CMOS Receiver Front-ends for Gigabit Short-Range Optical Communications
1. Auflage 2012
ISBN: 978-1-4614-3464-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 192 Seiten
Reihe: Analog Circuits and Signal Processing
ISBN: 978-1-4614-3464-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book describes optical receiver solutions integrated in standard CMOS technology, attaining high-speed short-range transmission within cost-effective constraints. These techniques support short reach applications, such as local area networks, fiber-to-the-home and multimedia systems in cars and homes. The authors show how to implement the optical front-end in the same technology as the subsequent digital circuitry, leading to integration of the entire receiver system in the same chip. The presentation focuses on CMOS receiver design targeting gigabit transmission along a low-cost, standardized plastic optical fiber up to 50m in length. This book includes a detailed study of CMOS optical receiver design - from building blocks to the system level.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;4
2;Contents;7
3;Symbols;10
4;Acronyms;13
5;1 Introduction;16
5.1;1.1…Optical Communications;17
5.1.1;1.1.1 A Look at History;17
5.1.2;1.1.2 Emerging Applications;19
5.1.2.1;1.1.2.1 Short-Haul NetworksShort-haul networks;20
5.1.2.2;1.1.2.2 In-Car Fiber-Optic NetworksIn-car fiber-optic networks;21
5.1.2.3;1.1.2.3 High-Speed Optical Interconnects;21
5.1.3;1.1.3 Comparison Between Communication Links;22
5.1.4;1.1.4 Optical Link Architecture;24
5.2;1.2…CMOS TechnologyCMOS technology;25
5.3;1.3…State of the Art;27
5.4;1.4…Outline of the Work;28
5.5;References;31
6;2 Optical Signal Transmission;33
6.1;2.1…Data Signal;33
6.1.1;2.1.1 Time Domain;34
6.1.2;2.1.2 Frequency Domain;37
6.1.3;2.1.3 Pseudorandom Bit Sequence;40
6.2;2.2…Optical Channels;42
6.2.1;2.2.1 Fundamentals of Optical Fibers;42
6.2.1.1;2.2.1.1 Single Mode vs. Multi Mode Optical Fiber;45
6.2.1.2;2.2.1.2 Step Index vs. Graded Index Optical Fiber;45
6.2.2;2.2.2 Glass Optical Fibers;46
6.2.3;2.2.3 Plastic Optical Fibers;47
6.3;2.3…Transceiver Front-End;48
6.3.1;2.3.1 Serializer;48
6.3.2;2.3.2 Laser DiodeLaser Diode;50
6.3.3;2.3.3 PhotodiodePhotodiode and Front-End;53
6.3.4;2.3.4 Deserializer;56
6.4;2.4…Key Parameters;57
6.4.1;2.4.1 Eye Diagram;58
6.4.2;2.4.2 Bit Error Ratio;58
6.4.3;2.4.3 SensitivitySensitivity;62
6.4.3.1;2.4.3.1 Extinction RatioExtinction Ratio;63
6.4.3.2;2.4.3.2 Decision Offset;65
6.4.3.3;2.4.3.3 Inter-Symbol Interference;67
6.4.3.4;2.4.3.4 Lower Cut-off Frequency;68
6.4.4;2.4.4 Dynamic RangeDynamic Range;71
6.5;2.5…Conclusions;71
7;3 TransimpedanceTransimpedance Amplifier;74
7.1;3.1…Optimum BandwidthBandwidth;75
7.2;3.2…Shunt Feedback TIA;77
7.3;3.3…Review of TIA Topologies;81
7.4;3.4…Input Dynamic Range Extension Techniques;82
7.4.1;3.4.1 Variable Feedback Resistor;83
7.4.2;3.4.2 Compression Technique;85
7.4.2.1;3.4.2.1 Duty Cycle Distortion;86
7.4.2.2;3.4.2.2 Logarithmical Compression Model;87
7.5;3.5…Proposed TIA Design;88
7.5.1;3.5.1 180 nm TransimpedanceTransimpedance Amplifier Architecture;89
7.5.1.1;3.5.1.1 TransimpedanceTransimpedanceGain Variation;90
7.5.2;3.5.2 90 nm TransimpedanceTransimpedance Amplifier Architecture;92
7.6;3.6…Experimental Verification;93
7.6.1;3.6.1 90 nm TIA;94
7.6.1.1;3.6.1.1 Optical Characterization;95
7.6.2;3.6.2 180 nm TIA;100
7.6.2.1;3.6.2.1 Optical Characterization;102
7.6.2.2;3.6.2.2 Electrical Characterization;104
7.7;3.7…Conclusions;106
7.8;References;110
8;4 Post-Amplifier;112
8.1;4.1…Amplifier Core;113
8.1.1;4.1.1 Multistage Structure;113
8.1.2;4.1.2 Broadband Techniques;115
8.1.2.1;4.1.2.1 Inter-stage Buffering;115
8.1.2.2;4.1.2.2 Inverse Scaling;116
8.1.2.3;4.1.2.3 Negative Capacitances;117
8.1.2.4;4.1.2.4 Zero-Pole Cancellation;118
8.2;4.2…Automatic Gain Control;118
8.2.1;4.2.1 Linear-in-dB Gain Distribution;120
8.2.2;4.2.2 Discrete Gain Distribution;121
8.3;4.3…Offset Compensation;123
8.4;4.4…Proposed AGC Design;126
8.4.1;4.4.1 Amplifier Core Architecture;126
8.4.1.1;4.4.1.1 Differential Gain Stage;126
8.4.1.2;4.4.1.2 Fourth Stage;127
8.4.1.3;4.4.1.3 Multi-Stage Amplifier Architecture;128
8.4.1.4;4.4.1.4 Bandwidth Enhancement;129
8.4.2;4.4.2 Programmable Gain;131
8.4.3;4.4.3 AGC Loop;136
8.4.3.1;4.4.3.1 Proposed State Diagram;136
8.4.3.2;4.4.3.2 AGC Loop Implementation;137
8.4.3.3;4.4.3.3 Shift Register;138
8.4.3.4;4.4.3.4 Peak Detector;139
8.4.3.5;4.4.3.5 Comparators;141
8.4.4;4.4.4 Offset Compensation Loop;142
8.5;4.5…Experimental Verification;145
8.5.1;4.5.1 PGA Implementation;145
8.5.2;4.5.2 AGC Implementation;146
8.5.3;4.5.3 PCB Characterization;148
8.5.4;4.5.4 On-Wafer Characterization;150
8.5.4.1;4.5.4.1 Programmable Gain Amplifier Results;151
8.5.4.2;4.5.4.2 AGC Post-Amplifier Results;154
8.6;4.6…Conclusions;155
8.7;References;157
9;5 POF Receiver;160
9.1;5.1…Plastic Optical Fiber;160
9.1.1;5.1.1 Optical Fiber Bandwidth;161
9.1.2;5.1.2 Bandwidth-Length Dependency;161
9.2;5.2…EqualizationEqualization;162
9.2.1;5.2.1 EqualizationEqualization Techniques;162
9.2.2;5.2.2 Adaptive EqualizationEqualization;164
9.3;5.3…Receiver Architecture;166
9.3.1;5.3.1 Preamplifier with PD Monitor;167
9.3.2;5.3.2 Adaptive Equalizer Implementation;169
9.3.2.1;5.3.2.1 Voltage-Controlled Equalizer;170
9.3.2.2;5.3.2.2 Low-Pass Filter;171
9.3.2.3;5.3.2.3 Power Error Detector;173
9.3.3;5.3.3 Post-Amplifier and Output Driver;175
9.4;5.4…Experimental Verification;176
9.4.1;5.4.1 Receiver Implementation;177
9.4.2;5.4.2 Results;177
9.5;5.5…Conclusions;182
9.6;References;184
10;6 Conclusions;186
10.1;6.1…General Conclusions;186
10.2;6.2…Further Research Directions;188
11;Appendix;190
11.1;Measurement Considerations;190
11.1.1;S ParametersS parameters;190
11.1.2;CalibrationCalibration;192
11.1.3;De-EmbeddingDe-embedding;194
11.2;PRBS GeneratorPRBS Generator;195
11.3;Technological Parameters;198
11.3.1;UMC 0.18 microm Mixed-Mode/RF CMOS Process;199
11.3.2;UMC 90 nm Logic and Mixed-Mode Process;200
12;References;201
13;Index;202




