E-Book, Englisch, 782 Seiten
Reihe: Engineering
Badnjevic / Skrbic / Škrbic CMBEBIH 2019
1. Auflage 2019
ISBN: 978-3-030-17971-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the International Conference on Medical and Biological Engineering, 16 ¿¿ 18 May 2019, Banja Luka, Bosnia and Herzegovina
E-Book, Englisch, 782 Seiten
Reihe: Engineering
ISBN: 978-3-030-17971-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This volume gathers the proceedings of the International Conference on Medical and Biological Engineering, which was held from 16 to 18 May 2019 in Banja Luka, Bosnia and Herzegovina. Focusing on the goal to ‘Share the Vision’, it highlights the latest findings, innovative solutions and emerging challenges in the field of Biomedical Engineering. The book covers a wide range of topics, including: biomedical signal processing, medical physics, biomedical imaging and radiation protection, biosensors and bioinstrumentation, bio-micro/nano technologies, biomaterials, biomechanics, robotics and minimally invasive surgery, and cardiovascular, respiratory and endocrine systems engineering. Further topics include bioinformatics and computational biology, clinical engineering and health technology assessment, health informatics, e-health and telemedicine, artificial intelligence and machine learning in healthcare, as well as pharmaceutical and genetic engineering. Given its scope, the book provides academic researchers, clinical researchers and professionals alike with a timely reference guide to measures for improving the quality of life and healthcare.
Autoren/Hrsg.
Weitere Infos & Material
1;Organization;6
1.1;Program Chairs;6
1.2;Program Committee;6
2;Preface;8
3;Contents;10
4;Biomedical Signal Processing;20
5;1 Adaptive Filter Removes Variability Caused by Respiration from Impedance Cardiography Signal;21
5.1;Abstract;21
5.2;1 Introduction;21
5.3;2 Method;22
5.3.1;2.1 The Adaptive Filter;22
5.3.2;2.2 Measurement;22
5.4;3 Results;22
5.5;4 Conclusion;24
5.6;References;24
6;2 Electrical Stimulation of Eye Blink in Individuals with Dry Eye Symptoms Caused by Chronic Unilateral Facial Palsy;25
6.1;Abstract;25
6.2;1 Introduction;25
6.3;2 Methods;26
6.3.1;2.1 Participants;26
6.3.2;2.2 Assessment of the Palsy and Ocular Symptoms;26
6.3.3;2.3 Equipment and Stimulation Parameters;26
6.3.4;2.4 Procedure;26
6.3.5;2.5 Data Analysis;27
6.4;3 Results;27
6.5;4 Discussion;28
6.6;Acknowledgements;29
6.7;References;29
7;3 Prescribe and Monitor Physical Activity Through a Community-Based eHealth Program: MOVIDA Platform;30
7.1;Abstract;30
7.2;1 Introduction;30
7.3;2 MOVIDA Platform Concept;31
7.3.1;2.1 MOVIDA.cronos;31
7.3.2;2.2 MOVIDA.eros;32
7.3.3;2.3 MOVIDA.polis;33
7.3.4;2.4 MOVIDA.domus;34
7.4;3 Implementation and Critical Challenges;34
7.5;4 Conclusions and Future Work;35
7.6;Acknowledgements;36
7.7;References;36
8;4 Miniaturized Stimulator for Imaging of Live Cell Responses to High Frequency Mechanical Vibration;37
8.1;Abstract;37
8.2;1 Introduction;37
8.3;2 Materials and Methods;38
8.3.1;2.1 Stimulator Design and Working Principle;38
8.3.2;2.2 Performance Range;38
8.3.3;2.3 Accuracy and Precision of the LMHF Vibration;39
8.4;3 Results;39
8.4.1;3.1 At Low Frequencies Stimulator Produces Even HMHF Vibration;39
8.4.2;3.2 Acceleration and Imaging Data Both Demonstrate Accurately Produced LMHF Vibration;41
8.4.3;3.3 High Precision Enables Observing of Cellular Responses to the LMHF Vibration;41
8.5;4 Discussion;41
8.6;5 Conclusion;42
8.7;Acknowledgements;42
8.8;References;42
9;5 EMG Signal Classification Using Discrete Wavelet Transform and Rotation Forest;44
9.1;Abstract;44
9.2;1 Introduction;44
9.3;2 Materials and Methods;45
9.3.1;2.1 Subjects and Data Acquisition;45
9.3.2;2.2 Feature Extraction Using DWT and Dimension Reduction;45
9.3.3;2.3 Artificial Neural Networks (ANN);45
9.3.4;2.4 K-Nearest Neighbour (K-NN);46
9.3.5;2.5 Support Vector Machine (SVM);46
9.3.6;2.6 Naïve Bayes;46
9.3.7;2.7 REPTree;46
9.3.8;2.8 LADTree;46
9.3.9;2.9 C4.5 Decision Tree;46
9.3.10;2.10 Random Tree Classifiers;46
9.3.11;2.11 Random Forests (RF);47
9.3.12;2.12 Rotation Forest (RoF);47
9.4;3 Results and Discussion;47
9.4.1;3.1 Experimental Results;47
9.4.2;3.2 Discussion;48
9.5;4 Conclusion;49
9.6;Acknowledgements;49
9.7;References;49
10;6 Impact of High Frequency Electromagnetic Fields on Process of Angiogenesis;51
10.1;Abstract;51
10.2;1 Introduction;51
10.3;2 Materials and Methods;52
10.4;3 Results and Discussion;52
10.5;4 Conclusions;55
10.6;References;55
11;7 Implementation of Neural Network-Based Classification Approach on Embedded Platform;57
11.1;Abstract;57
11.2;1 Introduction;57
11.3;2 State-of-Art;58
11.3.1;2.1 Classification Approaches;58
11.3.2;2.2 Real-Time FPGA-Based Implementation of EEG Signal Classification Approaches;58
11.4;3 Neural Networks FPGA-Based Implementation;59
11.5;4 Datasets and Feature Extraction;60
11.6;5 Discussion of Results;61
11.7;6 Conclusion and Outlook;62
11.8;Conflict of Interest Declaration;62
11.9;References;62
12;8 Stereo Laser Speckle Dissimilarity Analysis Using Self-organizing Maps;64
12.1;Abstract;64
12.2;1 Introduction;64
12.3;2 Materials and Methods;65
12.3.1;2.1 Acquisition Protocol and Equipment;65
12.3.2;2.2 Stereo Speckle Registration;65
12.3.2.1;2.2.1 HESR Segmentation;65
12.3.2.2;2.2.2 Epipolar Mapping Between Left and Right HESR Segmentations;66
12.3.2.3;2.2.3 Comparative Study of Stereo Dynamic Laser Speckle Videos During a Post-occlusive Hyperemia Situation;67
12.3.3;2.3 Dissimilarity Analysis Methodology;67
12.4;3 Results and Discussion;68
12.5;4 Conclusions and Future Work;72
12.6;Acknowledgements;72
12.7;References;72
13;9 Wavelet Phase Coherence Analysis Between the Respiratory Activity and the Microcirculation: The Effects of Type 1 Diabetes;74
13.1;Abstract;74
13.2;1 Introduction;74
13.3;2 Materials and Methods;75
13.4;3 Results;76
13.5;4 Conclusion;77
13.6;Conflicts of Interest;77
13.7;References;77
14;10 Prostate Cancer Detection Using Different Classification Techniques;79
14.1;Abstract;79
14.2;1 Introduction;79
14.3;2 Methods;80
14.3.1;2.1 Dataset;80
14.3.2;2.2 Classification Algorithms;80
14.4;3 Results and Discussion;82
14.5;4 Conclusion;84
14.6;Acknowledgements;84
14.7;References;84
15;11 Application of a Computer-Aided Diagnostic System for Early Identification of Periapical Lesions—A Pilot Study;86
15.1;Abstract;86
15.2;1 Introduction;86
15.3;2 Methods;87
15.3.1;2.1 Dataset;87
15.3.2;2.2 Classification Algorithm;87
15.3.3;2.3 Feature Selection Using Wrapper;87
15.4;3 Results;88
15.5;4 Discussion and Conclusion;89
15.6;References;90
16;12 Vectorcardiogram eLearning Application;91
16.1;Abstract;91
16.2;1 Introduction;91
16.3;2 eLearning and Multimedia in Biomedical Education;91
16.4;3 Heart Axis and Vectorcardiogram;92
16.5;4 Vectorcardiogram Application;92
16.6;5 Conclusion;94
16.7;References;95
17;13 Evaluating MSE Applicability to Short HR Time-Series;96
17.1;Abstract;96
17.2;1 Introduction;96
17.3;2 Methods and Materials;96
17.3.1;2.1 Multiscale Entropy Analysis of Heart Rate Time Series;96
17.4;3 MSE for Short Time Series;97
17.5;4 Conclusion;99
17.6;References;99
18;14 Automatic Detection of Alzheimer Disease Based on Histogram and Random Forest;100
18.1;Abstract;100
18.2;1 Introduction;100
18.3;2 Materials and Methods;101
18.3.1;2.1 ADNI Database;101
18.3.2;2.2 Histogram;101
18.3.3;2.3 Machine Learning Techniques;101
18.4;3 Experimental Results;102
18.4.1;3.1 Data Preparation Procedure;102
18.4.2;3.2 Performance Evaluation Criteria;102
18.4.3;3.3 Results and Discussion;103
18.5;4 Conclusion;104
18.6;Acknowledgements;104
18.7;References;104
19;Medical Physics, Biomedical Imaging and Radiation Protection;106
20;15 A Dosimetric Analysis of the Overlapping and Gap Areas Produced by Simulated Set-Up Errors on a Treatment Planning System in a Case of the Cranio-Spinal Irradiation of an Adult Patient;107
20.1;Abstract;107
20.2;1 Introduction;107
20.3;2 Materials and Methods;108
20.3.1;2.1 Preparation of 3DCRT Treatment Plan;108
20.3.2;2.2 A Simulation of the Overlapping and Gap Areas;108
20.3.3;2.3 Data Collection and Analysis;108
20.4;3 Results and Discussion;108
20.5;4 Conclusions;111
20.6;References;112
21;16 Novel Physical Heterogeneous Breast Phantom for X-Ray Phase Contrast Imaging;113
21.1;Abstract;113
21.2;1 Introduction;113
21.3;2 Materials and Methods;114
21.3.1;2.1 Phantom;114
21.3.2;2.2 Experimental Set-Up;114
21.3.3;2.3 Image Acquisition;115
21.3.4;2.4 Reconstruction and Evaluation Metrics;115
21.4;3 Results and Discussion;116
21.5;4 Conclusion;117
21.6;Acknowledgements;117
21.7;References;117
22;17 Computer Tomography Tube Voltage and Phantom Dimensions Influence on the Number of Hounsfield Units;119
22.1;Abstract;119
22.2;1 Introduction;119
22.3;2 Materials and Methods;120
22.4;3 Results;122
22.4.1;3.1 Catphan 504 Scan;122
22.4.2;3.2 CIRS 062 MA Abdomen Configuration Scan;122
22.4.3;3.3 CIRS 062 MA Head Configuration Scan;122
22.5;4 Discussion;124
22.6;5 Conclusions;125
22.7;Conflict of Interest;125
22.8;References;126
23;18 Dose Optimization of CT Thorax Exam in University Clinical Hospital Mostar;127
23.1;Abstract;127
23.2;1 Introduction;127
23.3;2 Methods;128
23.4;3 Results;129
23.5;4 Discussion;131
23.5.1;4.1 Limitations of This Study;131
23.6;Conflicts of Interest;131
23.7;References;131
24;19 Radiation Exposure of Patients in Neonatal Intensive Care Unit;133
24.1;Abstract;133
24.2;1 Introduction;133
24.3;2 Materials and Methods;134
24.3.1;2.1 Medical Exposure;134
24.3.2;2.2 Public Exposure;134
24.4;3 Results and Discussion;134
24.5;4 Conclusion;136
24.6;References;136
25;20 Use of Uptake Values to Estimate the Effective Dose to Patients in Positron Emission Tomography;138
25.1;Abstract;138
25.2;1 Introduction;138
25.3;2 Materials and Methods;139
25.4;3 Results and Discussion;140
25.5;4 Conclusion;141
25.6;References;141
26;21 Evaluation of Computed Tomography X-Ray Beam Dose Profiles;143
26.1;Abstract;143
26.2;1 Introduction;143
26.3;2 Materials and Methods;143
26.3.1;2.1 Dosimetry Systems;143
26.3.2;2.2 Methodology;144
26.4;3 Results;145
26.5;4 Discussion;146
26.6;5 Conclusion;146
26.7;Acknowledgements;146
26.8;References;146
27;22 Comparison of Specific Fractal and Multifractal Parameters for Certain Regions of Interest from Digital Mammograms;148
27.1;Abstract;148
27.2;1 Introduction;148
27.3;2 Materials and Methods;149
27.3.1;2.1 Morphological Operations on a DICOM Image;149
27.3.2;2.2 Calculation of Hurst Coefficient for a ROI;149
27.3.3;2.3 Calculation of {\hbox{H}}{\ddot{{\hbox{o}}}}{\hbox{lder}} and f(?) Parametars;150
27.4;3 Numerical Results;150
27.4.1;3.1 Data Analysis;151
27.5;4 Conclusions;152
27.6;References;153
28;23 Diagnosis of Severe Aortic Stenosis Using Implemented Expert System;154
28.1;Abstract;154
28.2;1 Introduction;154
28.3;2 Materials and Methods;155
28.4;3 Results;157
28.5;4 Conclusion;157
28.6;References;158
29;24 Portable X-Ray Devices: Loosing Border Between Controlled and Supervised Areas;159
29.1;Abstract;159
29.2;1 Introduction;159
29.3;2 Materials and Methods;160
29.3.1;2.1 Medical Exposure;160
29.4;3 Results and Discussion;160
29.5;4 Conclusion;161
29.6;References;161
30;25 Effectiveness of Asymmetry Analysis Technique Based on Statistical Features in Breast Cancer Detection with Modern Thermographic Imaging Systems;162
30.1;Abstract;162
30.2;1 Introduction;162
30.3;2 Material and Method;163
30.3.1;2.1 Equipment;163
30.3.2;2.2 Patient Preparation Protocols;163
30.3.3;2.3 Imaging;163
30.3.4;2.4 Method;164
30.4;3 Discussion;166
30.5;4 Conclusion;166
30.6;Acknowledgements;166
30.7;References;166
31;Biosensors and Bioinstrumentation;167
32;26 Microneedle-Based Sensor Systems for Real-Time Continuous Transdermal Monitoring of Analytes in Body Fluids;168
32.1;Abstract;168
32.2;1 Introduction;168
32.3;2 Transdermal Biosensing with Microneedles;169
32.3.1;2.1 Microneedle-Based Systems for Continuous Monitoring of Analyte Concentrations;170
32.4;3 Conclusion;172
32.5;Conflict of Interest;172
32.6;References;172
33;27 Review of Electrochemical Biosensors for Hormone Detection;174
33.1;Abstract;174
33.2;1 Introduction;174
33.3;2 Methods;175
33.4;3 Results;175
33.5;4 Conclusion;177
33.6;References;178
34;28 Development of a Tray-Separated Microbiological Incubator by Means of Electronic Components and Testing Its Performance;179
34.1;Abstract;179
34.2;1 Introduction;179
34.3;2 Methods;180
34.4;3 Results;183
34.5;4 Conclusion;184
34.6;References;184
35;29 Honeybee Activity Monitoring in a Biohybrid System for Explosives Detection;185
35.1;Abstract;185
35.2;1 Introduction;185
35.3;2 Honeybees for Explosive Detection;186
35.3.1;2.1 Passive Method;186
35.3.2;2.2 Active Method;187
35.4;3 Electronic System for Bees’ Activity Monitoring;188
35.5;4 Experimental Results;189
35.6;5 Conclusion;189
35.7;Acknowledgements;192
35.8;References;192
36;30 HaBEEtat: A Novel Monitoring Platform for More Efficient Honey Production;193
36.1;Abstract;193
36.2;1 Introduction;193
36.3;2 Literature Review;194
36.4;3 Methodology and Results;195
36.5;4 Discussion;199
36.6;5 Conclusion;200
36.7;References;200
37;31 Design and Implementation of a Monitoring System for Elastomeric Infusion Pumps;201
37.1;Abstract;201
37.2;1 Introduction;201
37.3;2 Materials and Methods;201
37.4;3 Results;202
37.5;4 Conclusion;204
37.6;Conflicts of Interest;204
37.7;References;204
38;32 Wearable System for Early Diagnosis and Follow Up of Spine Curvature Disorders;205
38.1;Abstract;205
38.2;1 Introduction;205
38.3;2 Materials and Methods;205
38.3.1;2.1 Hardware Architecture;205
38.3.2;2.2 Firmware Design;207
38.3.3;2.3 Application Program Design;207
38.4;3 Results and Discussion;208
38.5;4 Conclusion;209
38.6;References;209
39;Bio-micro/nano Technologies;210
40;33 Biogenic Nanoparticle Synthesis Using Marine Alga Schizochytrium sp.;211
40.1;Abstract;211
40.2;1 Introduct?on;211
40.3;2 Material and Methods;212
40.3.1;2.1 Organism, Culture Conditions and Growth Curve;212
40.3.2;2.2 Synthesis of Ag, Zn and Fe Nanoparticles Using Supernatant;213
40.3.3;2.3 Characterization of the Nanoparticles;213
40.4;3 Results and Discussion;213
40.4.1;3.1 Schizochytrium sp. Growth Curve;213
40.4.2;3.2 UV-vis Spectroscopy and Zeta Sizer Analyser Characterization of Particles;213
40.5;4 Conclusion;216
40.6;Acknowledgements;216
40.7;References;216
41;34 Green Synthesis of Metal Nanoparticles Using Microalga Galdieria sp.;217
41.1;Abstract;217
41.2;1 Introduction;217
41.3;2 Materials and Methods;218
41.3.1;2.1 Strain and Growth Conditions;218
41.3.2;2.2 Biosynthesis of Metal Nanoparticles by Galdieria sp.;218
41.3.3;2.3 Characterization of Metal Nanoparticles;218
41.3.4;2.4 Antimicrobial Activity Test;218
41.4;3 Results and Discussion;218
41.5;4 Conclusion;221
41.6;Acknowledgements;221
41.7;References;221
42;35 HIV Infection Mathematical Modeling and Future Trends of Treatment Using Nanotechnology and Nanorobots;223
42.1;Abstract;223
42.2;1 Introduction;223
42.3;2 HIV Infection;224
42.4;3 HIV Mathematical Modeling;224
42.5;4 HIV/AIDS Model Analysis;226
42.6;5 Improving HIV/AIDS Model for Adequate Treatment of Disease;227
42.7;6 Nanotechnology and Micro/Nanorobots in HIV/AIDS Treatment;229
42.7.1;6.1 Nanotechnology in HIV Treatment;229
42.7.2;6.2 Micro/Nanorobotics in HIV Treatment;230
42.8;7 Conclusions;231
42.9;References;232
43;36 Nanomedical Devices as a Tool for Consumer Research;233
43.1;Abstract;233
43.2;1 Introduction;233
43.3;2 The Impact of Nanotechnology on Consumer Research;234
43.4;3 Nanomarketing and Sustainability;235
43.5;4 Conclusion;236
43.6;Conflict of Interest;236
43.7;References;236
44;37 Near IR Exciton Theory of Ultrathin Crystalline Film Optics and Possibilities for Drug Delivery;237
44.1;Abstract;237
44.2;1 Introduction;237
44.3;2 Optical Properties of Ultrathin Films;238
44.3.1;2.1 Optical Properties Calculated by Layers;238
44.3.2;2.2 Optical Properties for the Whole Ultrathin Film;240
44.4;3 Conclusion;242
44.5;Acknowledgements;242
44.6;References;242
45;38 Phonon Engineering in Nanostructures for Targeted Drug Delivery;243
45.1;Abstract;243
45.2;1 Introduction;243
45.3;2 Phonon Subsystem in Nanostructures;244
45.3.1;2.1 Phonon Properties of Ultrathin Films;244
45.3.2;2.2 Phonon Properties of Quantum Dots;245
45.4;3 Conclusion;246
45.5;Acknowledgements;247
45.6;References;247
46;39 Zeolite Microneedles: Recent Advancements and Implications in the Delivery of Collagen;248
46.1;Abstract;248
46.2;1 Introduction;248
46.3;2 Zeolites Films and Membranes;249
46.4;3 Zeolite-Based Microneedles;249
46.5;4 Reasons for the Use of Zeolite in the Production of Microneedles;250
46.6;5 Collagen and Insulin Characters;250
46.7;6 Microneedle-Assisted Delivery of Collagen;251
46.8;7 Commercially Available Microneedle Devices;251
46.9;8 Conclusion;252
46.10;Conflict of Interest;252
46.11;References;252
47;40 Application of Raman Spectroscopy in Food Forensics: A Review;253
47.1;Abstract;253
47.2;1 Introduction;253
47.3;2 Raman Spectroscopy in General;254
47.3.1;2.1 Theoretical Basis of Raman Spectroscopy;254
47.4;3 Fourier Transform Raman Spectroscopy;254
47.4.1;3.1 NIR FT-Raman Spectroscopy;255
47.5;4 Surface-Enhanced Raman Spectroscopy;255
47.6;5 Visible Micro-Raman Spectroscopy;255
47.7;6 Multivariate Mathematical Methods;257
47.8;7 Application of Raman Spectroscopy;257
47.9;8 Conclusion;257
47.10;References;258
48;Biomaterials, Biomechanics, Robotics and Minimally Invasive Surgery;260
49;41 Evaluation of Several Microalgal Extracts as Bioactive Metabolites as Potential Pharmaceutical Compounds;261
49.1;Abstract;261
49.2;1 Introduction;261
49.3;2 Materials and Methods;262
49.3.1;2.1 Cultivation of Microalgae;262
49.3.2;2.2 Extraction of Crude Extract;262
49.4;3 Results and Discussion;263
49.4.1;3.1 Antioxidant Efficiency/Potential of Extracts;263
49.4.2;3.2 Total Phenol Content of Extracts;263
49.5;4 Conclusion;264
49.6;Acknowledgements;265
49.7;References;265
50;42 A Novel Approach in Determination of Biofilm Forming Capacity of Bacteria Using Random Forest Classifier;267
50.1;Abstract;267
50.2;1 Introduction;267
50.3;2 Materials and Methods;268
50.3.1;2.1 Random Forest;268
50.4;3 Results;269
50.4.1;3.1 Performance Evaluation;269
50.4.2;3.2 Experimental Results;270
50.5;4 Discussion;270
50.6;5 Conclusion;272
50.7;References;272
51;43 Analysis of Vertical Ground Reaction Force and Center of Pressure During Stair Climbing;274
51.1;Abstract;274
51.2;1 Introduction;274
51.3;2 Methods;275
51.4;3 Results;276
51.5;4 Conclusion;279
51.6;Conflict of Interest;279
51.7;References;279
52;44 Reference Tracking of the Robotic Above-Knee Prosthetic Leg with Actuated Knee and Ankle Joints Using Robust Control;280
52.1;Abstract;280
52.2;1 Introduction;280
52.3;2 Robust Passivity Based Control;280
52.3.1;2.1 Problem Description;280
52.3.2;2.2 RPBC for Active Above-Knee Prosthesis;281
52.3.3;2.3 Control Unit;282
52.4;3 Results and Discussion;283
52.5;4 Conclusion;285
52.6;Conflict of Interest;285
52.7;References;285
53;45 Comparation of CFD-Computation Fluid Dynamics Analysis of Shorter Designed Stent Graft in Abdominal Aorta;286
53.1;Abstract;286
53.2;1 Introduction;286
53.2.1;1.1 Numerical Models;287
53.3;2 Results;287
53.4;3 Conclusion;291
53.5;Conflict of Interest Declaration;292
53.6;References;292
54;Cardiovascular, Respiratory and Endocrine Systems Engineering;293
55;46 A Novel Enzymatic Microreactor: Towards Transforming the Pharmaceutical Industry;294
55.1;Abstract;294
55.2;1 Introduction;294
55.3;2 Enzymes Inside the Microreactors;295
55.4;3 Novel Enzymatic Microreactor;296
55.5;4 Materials and Methods;297
55.5.1;4.1 Tools and Materials;297
55.5.2;4.2 Preparation of Nanofibers;297
55.5.3;4.3 Patterning the Nanofiber Filled Chambers;297
55.5.4;4.4 Following the Transformation of pNPP to pNP;298
55.6;5 Experimental Results;298
55.7;6 Conclusion;298
55.8;References;298
56;47 Modeling of Voltage Imaging for the Study of Action Potential Propagation;300
56.1;Abstract;300
56.2;1 Introduction;300
56.3;2 Materials and Methods;300
56.3.1;2.1 Preprocessing;301
56.3.2;2.2 Signal Model;302
56.3.3;2.3 Parameter Estimation;302
56.3.4;2.4 Fitting and Optimization;302
56.4;3 Results;303
56.5;4 Discussion;304
56.6;Conflict of Interest;305
56.7;References;305
57;48 Atherosclerotic Plaque Formation in the Coronary Arteries;306
57.1;Abstract;306
57.2;1 Introduction;306
57.3;2 Materials and Methods;306
57.3.1;2.1 Computer Model;306
57.3.2;2.2 Boundary Conditions;307
57.4;3 Results;307
57.5;4 Discussion and Conclusion;309
57.6;Acknowledgements;309
57.7;References;309
58;49 Coronary Angiography Evaluation of Atherosclerosis in Diabetic Patients;311
58.1;Abstract;311
58.2;1 Introduction;311
58.3;2 Materials and Methods;312
58.3.1;2.1 Subjects;312
58.3.2;2.2 Methods;312
58.3.3;2.3 Statistical Analysis;312
58.4;3 Results;312
58.5;4 Discussion;313
58.6;5 Conclusions;314
58.7;Conflict of Interest;314
58.8;REFERENCES;314
59;50 Optimizing Insulin Pump Therapy: Advanced Bolus Options;315
59.1;Abstract;315
59.2;1 Introduction;315
59.3;2 Aim;316
59.4;3 Participants and Methods;316
59.5;4 Results;317
59.6;5 Discussion;317
59.7;6 Conclusion;319
59.8;References;319
60;51 Parametric Optimization of Stent Design Based on Numerical Methods;321
60.1;Abstract;321
60.2;1 Introduction;321
60.3;2 Materials and Methods;322
60.3.1;2.1 Stents;322
60.3.2;2.2 Parametric Optimization;322
60.4;3 Results and Conclusion;323
60.5;Acknowledgements;325
60.6;References;325
61;52 Numerical Analysis of Plaque Progression in 3D Patient Specific Model of Carotid Artery;326
61.1;Abstract;326
61.2;1 Introduction;326
61.3;2 Materials and Methods;327
61.3.1;2.1 Geometrical Model;327
61.3.2;2.2 Numerical Simulation;327
61.4;3 Results and Discussion;328
61.5;4 Conclusion;329
61.6;Acknowledgements;329
61.7;References;329
62;53 Forth Heart Sound Detection Using Backward Time-Growing Neural Network;330
62.1;Abstract;330
62.2;1 Introduction;330
62.3;2 Materials;331
62.3.1;2.1 The Tools;331
62.3.2;2.2 The Patient Population;331
62.4;3 Methods;331
62.4.1;3.1 The Heart Sound Processing;331
62.4.2;3.2 Statistical Evaluation;332
62.5;4 Results;332
62.6;5 Discussion;333
62.7;6 Conclusions;333
62.8;Acknowledgements;333
62.9;References;333
63;Bioinformatics and Computational Biology;335
64;54 Using Data Science for Medical Decision Making Case: Role of Gut Microbiome in Multiple Sclerosis;336
64.1;Abstract;336
64.2;1 Introduction;336
64.2.1;1.1 The Human Gut Microbiome;336
64.2.2;1.2 Sequencing Techniques: 16s rRNA Gene Sequencing;337
64.3;2 Background;337
64.4;3 Dataset and Methodology;337
64.4.1;3.1 Dataset;337
64.4.2;3.2 Taxonomy Analysis;338
64.4.3;3.3 Random Forest Classification;339
64.5;4 Results;339
64.6;5 Conclusions and Future Work;341
64.7;References;342
65;55 Discovery of Membrane Permeability, Pharmacokinetics Properties and Mechanism of Action for Analogs of Ethylenediamine-N,N?-di-2-(3-Cyclohexyl)Propionic Acid and 1,3-Propandiamine-N,N?-di-2-(3-Cyclohexyl)Propionic Acid with Antiproliferative Activity Using In Vitro and In Silico Methods;344
65.1;Abstract;344
65.2;1 Introduction;344
65.3;2 Materials and Methods;346
65.3.1;2.1 In Vitro Method—PAMPA Test;346
65.3.2;2.2 In Silico Methods;347
65.4;3 Results and Discussion;348
65.4.1;3.1 In Vitro Results—PAMPA Test;348
65.4.2;3.2 In Silico Results;349
65.5;4 Conclusion;356
65.6;References;356
66;56 Analysis of miRNA Targets in Correlation to Neurodevelopment and Diagnosis of Autism Spectrum Disorder (ASD);357
66.1;Abstract;357
66.2;1 Introduction;357
66.3;2 Materials and Methods;359
66.4;3 Results;359
66.5;4 Discussion;360
66.6;5 Conclusion;361
66.7;References;361
67;57 Discrete Modelling of Liver Cell Aggregation Using Partial Differential Equations;364
67.1;Abstract;364
67.2;1 Introduction;364
67.3;2 Materials and Methods;365
67.4;3 Results and Discussion;366
67.5;4 Conclusion;368
67.6;Acknowledgements;368
67.7;References;368
68;Clinical Engineering and Health Technology Assessment;370
69;58 Smart Ageing: Are We Succeeding?;371
69.1;Abstract;371
69.2;1 Introduction;371
69.3;2 Smart Ageing Ecosystem;372
69.4;3 Survey Analysis and Discussion;373
69.5;4 Conclusion;376
69.6;Conflicts of Interest;376
69.7;References;376
70;59 A New Digital Mental Health System Infrastructure for Diagnosis of Psychiatric Disorders and Patient Follow-Up by Text Analysis in Turkish;378
70.1;Abstract;378
70.2;1 Introduction;378
70.3;2 Related Work;379
70.4;3 Experimental Setup;380
70.4.1;3.1 Datasets;380
70.4.2;3.2 Data Preprocessing;380
70.4.3;3.3 Features;380
70.4.4;3.4 Classification;381
70.5;4 Conclusion;382
70.6;References;384
71;60 Only All Together We Can Make It Better on Any Strategic Matter;386
71.1;Abstract;386
71.2;1 Introduction;386
71.3;2 Materials and Methods;386
71.4;3 Results;387
71.5;4 Discussion;388
71.6;5 Conclusion;388
71.7;Acknowledgements;388
71.8;Conflict of Interest;388
71.9;References;389
72;61 Designing a Healthcare Computer Aided Facility Management System: A New Approach;390
72.1;Abstract;390
72.2;1 Introduction;390
72.3;2 Design and Implementation;391
72.4;3 Conclusions;394
72.5;References;394
73;62 System for Monitoring Environmental Parameters in a Hospital Facility;395
73.1;Abstract;395
73.2;1 Introduction;395
73.3;2 Methods;395
73.4;3 Results;396
73.5;4 Conclusion;398
73.6;References;398
74;63 Adverse Drug Events (ADEs): A Novel RFID Device for a Safe and Strong Match Between Patients and Their Medications;399
74.1;Abstract;399
74.2;1 Introduction;399
74.3;2 Materials and Methods;399
74.3.1;2.1 Previous Version: Problems to Solve;399
74.3.2;2.2 Tools;400
74.3.3;2.3 Design of the New Antenna;400
74.4;3 Results;403
74.5;4 Conclusion;404
74.6;References;404
75;64 Donation of Medical Devices in Low-Income Countries: Preliminary Results from Field Studies;405
75.1;Abstract;405
75.2;1 Introduction;405
75.3;2 Methods;406
75.3.1;2.1 Case Studies, Focus Groups and Conferences;406
75.4;3 Results;406
75.4.1;3.1 General Conditions;406
75.4.2;3.2 Minimum Requirements and International Standards;406
75.4.3;3.3 On Donations: X-Ray Machine and Oxygen Concentrator;407
75.5;4 Discussion and Conclusion;408
75.6;References;409
76;65 eVerlab: Software Tool for Medical Device Safety and Performance Inspection Management;410
76.1;Abstract;410
76.2;1 Introduction;410
76.3;2 Methods;411
76.4;3 Results;411
76.4.1;3.1 GUI System of eVerlab Software;411
76.4.2;3.2 Future Application;413
76.5;4 Conclusion;415
76.6;Conflict of Interest;415
76.7;References;415
77;66 Establishment of Measurement System for Hearing Aids at TÜB?TAK UME;417
77.1;Abstract;417
77.2;1 Introduction;417
77.2.1;1.1 Measurement Infrastructure of UME Medical Metrology Laboratory for Hearing Aids Tests;418
77.3;2 Results and Discussion;418
77.4;3 Conclusion;421
77.5;References;421
78;67 The Importance of Metrology in Medicine;422
78.1;Abstract;422
78.2;1 Introduction;422
78.3;2 Problems Related to Measurements and Importance of Medical Measurements;422
78.4;3 Development of Medical Metrology Laboratory at TÜB?TAK UME, Turkey;424
78.5;4 Traceability in Medical Measurements;425
78.6;5 Conclusions and Suggestions;425
78.7;References;428
79;Health Informatics, E-health and Telemedicine;430
80;68 Towards Pain-Fingerprinting: A Ubiquitous and Interoperable Clinical Decision Support System for Pain Assessment;431
80.1;Abstract;431
80.2;1 Introduction;431
80.3;2 Background;432
80.4;3 Proposed Approach;432
80.5;4 Discussion and Conclusions;434
80.6;Acknowledgements;434
80.7;References;434
81;69 Identification of Alcohol Addicts Among High School Students Using Decision Tree Based Algorithm;436
81.1;Abstract;436
81.2;1 Introduction;436
81.3;2 Background;437
81.4;3 Data Preprocessing;437
81.4.1;3.1 Data Formation;438
81.4.2;3.2 Linear Correlation;440
81.5;4 Results and Discussion;440
81.5.1;4.1 Decision Tree Configuration;441
81.6;5 Conclusion;444
81.7;Statement of Conflicts of Interest and Informed Consent;444
81.8;References;444
82;70 Identification of Real and Imaginary Movements in EEG Using Machine Learning Models;445
82.1;Abstract;445
82.2;1 Introduction;445
82.3;2 Related Work;446
82.4;3 Data Acquisition;446
82.5;4 Results;447
82.6;5 Discussion and Open Issues;449
82.7;6 Conclusions;449
82.8;Acknowledgements;449
82.9;References;449
83;71 Development of a Diagnostic Support Software in the Clinicobiochemical Evaluation of Thyroid Disease Diagnosis;451
83.1;Abstract;451
83.2;1 Introduction;451
83.3;2 Methods and Materials;452
83.4;3 Results and Discussion;452
83.5;4 Conclusion;456
83.6;References;456
84;Artificial Intelligence and Machine Learning in Healthcare;457
85;72 Machine Learning Techniques for Performance Prediction of Medical Devices: Infant Incubators;458
85.1;Abstract;458
85.2;1 Introduction;458
85.3;2 Methods;459
85.3.1;2.1 Dataset Used for the Development of Expert System;459
85.3.2;2.2 Expert System for Prediction of Medical Device Performance;461
85.3.2.1;2.2.1 Artificial Neural Network Development;461
85.3.2.2;2.2.2 Fuzzy Classifier for Maintenance Necessity Prediction;461
85.4;3 Results;462
85.4.1;3.1 Testing Performance of Developed ANN;462
85.4.2;3.2 Testing Performance of Fuzzy Classifier;462
85.5;4 Conclusion;464
85.6;References;464
86;73 Prediction of Heart Diseases Using Majority Voting Ensemble Method;466
86.1;Abstract;466
86.2;1 Introduction;466
86.3;2 Literature Review;467
86.4;3 Methodology;467
86.4.1;3.1 Dataset;467
86.4.2;3.2 Feature Selection;467
86.4.3;3.3 Classification;468
86.5;4 Results;469
86.6;5 Conclusion;472
86.7;Conflict of Interest Declaration;472
86.8;References;472
87;74 Predicting the Outcome of Granulation and Tableting Processes Using Different Artificial Intelligence Methods;474
87.1;Abstract;474
87.2;1 Introduction;474
87.2.1;1.1 ANN Model;474
87.2.2;1.2 Cubist;475
87.2.3;1.3 Random Forest;475
87.2.4;1.4 k-NN;475
87.2.5;1.5 The Combination of Neuro-Fuzzy Logic (NFL) and Gene Expression Programming (GEP);475
87.3;2 Predicting the Outcome of Granulation and Tableting Processes;475
87.3.1;2.1 Wet Granulation Processes;475
87.3.2;2.2 Roll Compaction;477
87.3.3;2.3 Minimization of Capping;477
87.3.4;2.4 Scaling-up Granulation Process;478
87.3.5;2.5 Quality Improvement of Ramipril Tablets;478
87.4;3 Conclusion;478
87.5;Conflict of Interest;478
87.6;References;478
88;75 Lactose Intolerance Prediction Using Artificial Neural Networks;480
88.1;Abstract;480
88.2;1 Introduction;480
88.3;2 Materials and Methods;481
88.3.1;2.1 Dataset;481
88.3.2;2.2 Development of Artificial Neural Network;482
88.4;3 Results and Discussion;482
88.5;4 Conclusion;484
88.6;References;484
89;76 Comparative Study on Different Classification Techniques for Ovarian Cancer Detection;486
89.1;Abstract;486
89.2;1 Introduction;486
89.3;2 Methods;487
89.3.1;2.1 Dataset;487
89.3.2;2.2 Classification Algorithms;487
89.4;3 Results and Discussion;489
89.5;4 Conclusion;491
89.6;References;492
90;77 Normalized Neural Networks for Breast Cancer Classification;494
90.1;Abstract;494
90.2;1 Introduction;494
90.3;2 Wisconsin Breast Cancer Database Overview;495
90.4;3 Theoretical Background;495
90.4.1;3.1 Artificial Neural Networks (ANNs);495
90.4.2;3.2 Multi Layer Perceptron (MLP);495
90.4.3;3.3 Normalization;496
90.5;4 Experimental Results;497
90.6;5 Conclusion;498
90.7;References;499
91;Pharmaceutical Engineering;500
92;78 Landscape of CYP3A5 Variants in Central-Eastern and South European Populations;501
92.1;Abstract;501
92.2;1 Background;502
92.3;2 Aim;502
92.4;3 Materials and Methods;502
92.5;4 Statistical Analysis;502
92.6;5 Results;502
92.7;6 Discussion;503
92.8;7 Conclusion;504
92.9;Acknowledgements;504
92.10;References;504
93;79 Development of Inhalable Dry Gene Powders for Pulmonary Drug Delivery by Spray-Freeze-Drying;506
93.1;Abstract;506
93.2;1 Introduction;506
93.3;2 Spray-Freeze-Drying (SFD);507
93.4;3 Development of Dry Gene Powders by SFD;508
93.5;4 Conclusion;509
93.6;Conflict of Interest;509
93.7;References;509
94;80 Antimicrobial Activity of Selected Wild Mushrooms from Different Areas of Bosnia and Herzegovina;511
94.1;Abstract;511
94.2;1 Introduction;511
94.3;2 Materials and Methods;512
94.4;3 Results and Discussion;513
94.5;4 Conclusion;514
94.6;Acknowledgements;514
94.7;References;514
95;81 Effects of 99mTc on the Redox Properties of L-Thyroxine;515
95.1;Abstract;515
95.2;1 Introduction;515
95.3;2 Materials and Method;516
95.4;3 Results and Discussion;516
95.5;4 Conclusions;517
95.6;Conflict of Interest;518
95.7;References;518
96;82 Novel Aspects of Drug Delivery: Wireless Electronic Devices;519
96.1;Abstract;519
96.2;1 Introduction;519
96.3;2 Smart Pills;519
96.3.1;2.1 IntelliCap®;520
96.3.2;2.2 SmartPill®;520
96.3.3;2.3 Uses of SmartPill® and IntelliCap® So Far;521
96.4;3 Electronic Transdermal Patches;521
96.4.1;3.1 Physical Penetration Enhancement;522
96.4.2;3.2 Active Methods for Drug Transport;522
96.5;4 Conclusion;522
96.6;Conflict of Interest;523
96.7;References;523
97;83 Quantification of Active Substances in Some Drugs Using by Derivative UV/Vis spectroscopy;524
97.1;Abstract;524
97.2;1 Introduction;524
97.3;2 Methods;525
97.3.1;2.1 Samples;525
97.3.2;2.2 Instrumentation;525
97.4;3 Results and Discussion;525
97.4.1;3.1 Quantification of Acetyl-Salicylic Acid (ASA);525
97.4.2;3.2 Quantification of Naproxen (N);525
97.4.3;3.3 Quantification of Meloxicam (M);526
97.5;4 Conclusions;528
97.6;References;528
98;84 In Vitro Evaluation of Transdermal Patches Containing Capsaicin Marketed in Bosnia and Herzegovina;529
98.1;Abstract;529
98.2;1 Introduction;529
98.3;2 Materials and Methods;530
98.3.1;2.1 Chemicals;530
98.3.2;2.2 Transdermal Patches;530
98.3.3;2.3 Dissolution Apparatus;530
98.3.4;2.4 High Performance Liquid Chromatography (HPLC);531
98.3.5;2.5 Statistical Analysis;531
98.4;3 Results and Discussion;531
98.5;4 Conclusions;531
98.6;References;532
99;85 UV-VIS Determination of Acetylsalicylic Acid in Aspirin Tablets Using Different Solvents and Conditions;533
99.1;Abstract;533
99.2;1 Introduction;533
99.3;2 Materials and Methods;534
99.3.1;2.1 Standard Preparation;534
99.3.1.1;2.1.1 Method with FeCl3/HCl Solution;534
99.3.1.2;2.1.2 Method with Ethanol;534
99.3.2;2.2 Sample Preparation;534
99.3.2.1;2.2.1 Method with FeCl3/HCl Solution;534
99.3.2.2;2.2.2 Method with Ethanol;534
99.4;3 Results and Discussion;534
99.4.1;3.1 Method with FeCl3/HCl Solution;534
99.4.2;3.2 Method with Ethanol;536
99.5;4 Conclusion;537
99.6;References;537
100;86 Lysozyme-Enzybiotic with Valuable Effects in Prevention and Treatment of Postoperative Complications in Adult Patients After Bilateral Tonsillectomy;538
100.1;Abstract;538
100.2;1 Introduction;538
100.3;2 Materials and Methods;539
100.4;3 Results;539
100.5;4 Discussion;540
100.6;5 Conclusion;542
100.7;Conflict of Interest;542
100.8;References;542
101;87 Use of Hollow Microneedle Drug Delivery Systems in Treatment of Diabetes Mellitus;543
101.1;Abstract;543
101.2;1 Introduction;543
101.3;2 Transdermal Application: Hollow Microneedles;544
101.4;3 Transdermal Delivery of Metformin;544
101.5;4 Transdermal Delivery of Insulin;545
101.6;5 Transdermal Delivery of Exendin;546
101.7;6 Conclusion;547
101.8;Conflict of Interest;547
101.9;Reference;547
102;88 Toxicity of Azo Dyes in Pharmaceutical Industry;549
102.1;Abstract;549
102.2;1 Introduction;549
102.3;2 Tartrazine;550
102.4;3 Sunset Yellow;551
102.5;4 Ponceau 4R;552
102.6;5 Azorubine;553
102.7;6 Amaranth;553
102.8;7 Brilliant Blue;553
102.9;8 Allura Red;554
102.10;9 Conclusion;554
102.11;Conflict of Interest;555
102.12;Reference;555
103;89 Genes Associated With Free Fatty Acid Levels and Dyslipidemia in Type 2 Diabetes Patients;556
103.1;Abstract;556
103.2;1 Introduction;556
103.2.1;1.1 Genetics of Type 2 Diabetes;556
103.2.2;1.2 Genetics of Fatty Acids;557
103.2.3;1.3 Fatty Acids and Type 2 Diabetes;557
103.2.4;1.4 Type 2 Diabetes and Dyslipidemia;557
103.3;2 Materials and Methods;558
103.4;3 Results;559
103.5;4 Discussion;559
103.6;5 Conclusions;559
103.7;References;559
104;Genetic Engineering;561
105;90 Correlation of Leukemia Genes Overexpression and Point Mutations in Different Tissues;562
105.1;Abstract;562
105.2;1 Introduction;562
105.2.1;1.1 Acute Lymphocytic Leukemia;562
105.2.2;1.2 Chronic Lymphocytic Leukemia;563
105.2.3;1.3 Acute Myeloid Leukemia;563
105.2.4;1.4 Chronic Myeloid Leukemia;563
105.3;2 Methods;563
105.4;3 Results;563
105.4.1;3.1 Overexpression Pattern in Tissues;563
105.4.2;3.2 Point Mutation Pattern in Tissues;564
105.5;4 Conclusion;565
105.6;References;566
106;91 Craniometric Analysis of the Foramen Magnum for Gender Determination in Bosnian Human Skulls;569
106.1;Abstract;569
106.2;1 Introduction;569
106.3;2 Materials and Methods;570
106.3.1;2.1 Statistical Analysis;570
106.4;3 Results;570
106.5;4 Discussion;572
106.6;5 Conclusion;572
106.7;Acknowledgements;573
106.8;References;573
107;92 Liver Enzymes as Biomarkers for Hepatotoxicity of Statins in Patients with Dyslipidemia;574
107.1;Abstract;574
107.2;1 Introduction;574
107.3;2 Materials and Methods;575
107.4;3 Results and Discussion;576
107.5;4 Conclusions;577
107.6;References;578
108;93 Impact of Antibiotic Misuse on Genetics Alterations of Bacteria;579
108.1;Abstract;579
108.2;1 Introduction;579
108.3;2 Mechanisms of Antibiotic Resistance;580
108.4;3 Genetics of Resistance;580
108.4.1;3.1 Antibiotic-Induced Mutagenesis;580
108.4.2;3.2 Antibiotic-Induced Recombination and Lateral Transfer;580
108.4.3;3.3 Evolution of Antibiotic Resistance Genes;581
108.5;4 Detecting Antibiotic Resistance Genes;581
108.6;5 Multiple Drug Resistance;582
108.7;6 Conclusion;582
108.8;Conflict of Interest;583
108.9;References;583
109;94 Diagnosis of Skin Disease Based on Fingerprint;584
109.1;Abstract;584
109.2;1 Introduction;584
109.3;2 Research Objectives;584
109.4;3 Minutiae;585
109.5;4 Sample Sampling and Image Processing;585
109.6;5 Fingerprint Recognition System;587
109.7;6 Exposition;587
109.8;7 Conclusion;588
109.9;References;589
110;95 Epigenetics: How Does It Affect Cancer?;590
110.1;Abstract;590
110.2;1 Introduction;590
110.3;2 Methodology;590
110.4;3 Results;591
110.5;4 Discussion;591
110.5.1;4.1 Epigenetic and Its Modulating Factors;591
110.5.2;4.2 Details of Epigenetics;592
110.5.3;4.3 Epigenetics as Prophylaxis;592
110.5.4;4.4 Epigenetics as Diagnosis and Prognosis;592
110.5.5;4.5 Epigenetics as Therapy;593
110.6;5 Conclusion;593
110.7;References;593
111;96 Screening of Heavy Metal Occurence in Edible Plants from Bosnian Market;595
111.1;Abstract;595
111.2;1 Introduction;595
111.3;2 Materials and Methods;596
111.3.1;2.1 Collection of Samples and Preparation for Further Analysis;596
111.3.2;2.2 Preparation of Samples for the AAS Analysis;596
111.4;3 Results and Discussion;596
111.5;4 Conclusions;599
111.6;Acknowledgements;599
111.7;References;599
112;97 Genetic Polymorphism ?-Lactoglobulin Gene in Dubska Pramenka Sheep Breed;600
112.1;Abstract;600
112.2;1 Introduction;600
112.3;2 Materials and Methods;601
112.4;3 Results;601
112.5;4 Discussion;601
112.6;References;603
113;Student Competition Session;605
114;98 Prostate Tissue Classification Based on Prostate-Specific Antigen Levels and Mitochondrial DNA Copy Number Using Artificial Neural Network;606
114.1;Abstract;606
114.2;1 Introduction;606
114.3;2 Materials and Methods;607
114.3.1;2.1 Dataset;607
114.3.2;2.2 Development of Artificial Neural Network;608
114.4;3 Results;608
114.5;4 Conclusion;610
114.6;References;610
115;99 Influence of Artificial Microgravity on Human Arterial Vessels;612
115.1;Abstract;612
115.2;1 Introduction;612
115.3;2 Materials and Methods;612
115.4;3 Results;614
115.5;4 Discussion;615
115.6;5 Conclusion;617
115.7;Acknowledgements;620
115.8;References;620
116;100 Using the Distance in Logistic Regression Models for Predictor Ranking in Diabetes Detection;621
116.1;Abstract;621
116.2;1 Introduction;621
116.3;2 A Brief Review of LR Models;622
116.4;3 Using Ri for Predictor Ranking;623
116.5;4 Experimental Results;623
116.5.1;4.1 Datasets;623
116.5.2;4.2 Results;623
116.6;5 Conclusions;624
116.7;Acknowledgements;626
116.8;References;626
117;101 Expert System for Performance Prediction of Anesthesia Machines;627
117.1;Abstract;627
117.2;1 Introduction;627
117.3;2 Methods;628
117.3.1;2.1 Dataset for Development of Expert System for Prediction of Anesthesia Machine Performance Status;628
117.3.2;2.2 Development of Artificial Neural Network;629
117.3.3;2.3 Development of Fuzzy Classifier;631
117.4;3 Results;631
117.5;4 Conclusion;632
117.6;Appendix 1: K-Fold Cross Validation;633
117.7;Appendix 2: Membership Functions;633
117.8;References;634
118;102 Smoking and Caffeine Consumption as Stress Coping Mechanisms in Medical Students;636
118.1;Abstract;636
118.2;1 Introduction;636
118.3;2 Methods and Materials;637
118.3.1;2.1 Participants;637
118.3.2;2.2 Materials and Procedure;637
118.4;3 Results;637
118.5;4 Discussion;639
118.6;Author Contributions;640
118.7;References;640
119;103 Review of Biosensors in Industrial Process Control;642
119.1;Abstract;642
119.2;1 Introduction;642
119.3;2 Methods;643
119.4;3 Results;643
119.4.1;3.1 Biosensors for Glycerol Detection;643
119.4.2;3.2 ?iosensors for ?-Lactam Detection;645
119.5;4 Conclusion;646
119.6;References;648
120;104 The Assessment of Drug Interactions and Safety of Administration with Regard to Special Population Groups by a Developed Computer Program;650
120.1;Abstract;650
120.2;1 Introduction;650
120.3;2 Methodology;651
120.4;3 Results and Discussion;652
120.5;4 Conclusion;657
120.6;Conflict of interest declaration;657
120.7;References;657
121;105 Implementing the Calculation of the Appropriate Drug Dose for Children Using the Programming Language C#;659
121.1;Abstract;659
121.2;1 Introduction;659
121.3;2 Methodology;660
121.4;3 Results and Discussion;661
121.5;4 Conclusion;664
121.6;Conflict of Interest Declaration;665
121.7;References;665
122;106 ORÁO: RESTful Cloud-Based Ophthalmologic Medical Record for Chromatic Pupillometry;666
122.1;Abstract;666
122.2;1 Introduction;666
122.3;2 Platform Project;666
122.3.1;2.1 User Interface Design;667
122.3.2;2.2 Pilot Study Design;667
122.3.3;2.3 RESTful Cloud-Based Platform;667
122.4;3 Results;668
122.5;4 Discussion;673
122.6;Acknowledgements;673
122.7;References;673
123;107 A Language Independent Decision Support System for Diagnosis and Treatment by Using Natural Language Processing Techniques;674
123.1;Abstract;674
123.2;1 Introduction;674
123.3;2 Clinical Decision Making;675
123.4;3 Named Entity Recognition (NER) and Symptom extraction methods;675
123.4.1;3.1 Syntactic and Semantic Similarity;676
123.5;4 Methodology;676
123.5.1;4.1 Data Collection and the Structure of the Data;676
123.5.2;4.2 Implementation;676
123.6;5 Results and Conclusion;679
123.7;References;680
124;108 Fabrication of Rectal and Vaginal Suppositories Using 3D Printed Moulds: The Challenge of Personalized Therapy;682
124.1;Abstract;682
124.2;1 Introduction;682
124.3;2 Materials and Methods;683
124.3.1;2.1 Materials;683
124.3.2;2.2 Design of Suppositories;683
124.3.3;2.3 Printing Process;683
124.3.4;2.4 Suppository Fabrication;683
124.3.5;2.5 Customization of Computer Software;683
124.4;3 Results and Discussion;684
124.5;4 Conclusion;687
124.6;Acknowledgements;687
124.7;References;687
125;109 Coated 3D Printed PLA Microneedles as Transdermal Drug Delivery Systems;688
125.1;Abstract;688
125.2;1 Introduction;688
125.3;2 Materials and Methods;690
125.3.1;2.1 Materials;690
125.3.2;2.2 Printing 3D Microneedles;690
125.3.3;2.3 Etching 3D Printed Microneedles;690
125.3.4;2.4 Coating 3D Printed Microneedles;691
125.3.5;2.5 Transdermal Application of Microneedles in Vitro;691
125.4;3 Results and Discussion;691
125.4.1;3.1 Preparation and Coating 3D Printed MNs;691
125.4.2;3.2 In Vitro Transdermal MNs Application;693
125.5;4 Conclusion;693
125.6;Acknowledgements;694
125.7;References;694
126;110 Development of a Diagnostic Support Software in the Clinicobiochemical Evaluation of Secondary Amenorrhea Diagnosis;696
126.1;Abstract;696
126.2;1 Introduction;696
126.3;2 Methods and Materials;697
126.4;3 Result and Discussion;697
126.5;4 Conclusion;700
126.6;References;700
127;111 Acid-Resistant Capsules with Sugar Microneedles for Oral Delivery of Ascorbic Acid;701
127.1;Abstract;701
127.2;1 Introduction;701
127.3;2 Materials and Methods;702
127.3.1;2.1 Materials;702
127.3.2;2.2 Mold Making;702
127.3.3;2.3 Forming Sugar Microneedles;702
127.3.4;2.4 Experiment with Acidic and Basic Medium;703
127.4;3 Results and Discussion;703
127.4.1;3.1 Formulation of Different Types of Sugar Microneedles;703
127.4.2;3.2 Results of Using Different Types of Molds;704
127.4.3;3.3 Results of an Experiment in Acidic and Base Medium;704
127.5;4 Conclusion;705
127.6;Acknowledgements;705
127.7;References;705
128;112 Effect of Commercially Available Synthetic Insulin on the Biofilm Formation in S. aureus and E. coli Bacterial Strains;706
128.1;Abstract;706
128.2;1 Introduction;706
128.3;2 Methods;707
128.3.1;2.1 Bacterial Strands;707
128.3.2;2.2 Hormonal V/V Solutions;707
128.3.3;2.3 Antibacterial Testing;707
128.3.4;2.4 Testing of the Effect of Hormonal V/V Solution on Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, a Clinical Strain of Escherichia coli and a Clinical Strain of Methicillin-Resistant Staphylococcus aureus (MRSA);707
128.4;3 Results;707
128.4.1;3.1 Antibacterial Activity of Insulin Detemir V/V Solutions in Tested Bacterial Strains;707
128.4.2;3.2 Biofilm Formation Activity and Capability;707
128.5;4 Discussion and Conclusion;708
128.6;References;709
129;113 Use of Biosensors in Diabetes Monitoring: Medical and Economic Aspects;711
129.1;Abstract;711
129.2;1 Introduction;711
129.3;2 Glucose Monitoring;712
129.3.1;2.1 Traditional Glucose Monitoring;712
129.3.2;2.2 Biosensors;712
129.4;3 Materials and Methods;713
129.5;4 Results;713
129.6;5 Discussion;714
129.7;6 Conclusion;715
129.8;Conflict of Interest;715
129.9;Appendix 1;716
129.10;Appendix 2;717
129.11;References;718
130;114 Therapeutic Aspects and Diagnosis of the Attention Deficit Hyperactivity Disorder—ADHD in Adults;719
130.1;Abstract;719
130.2;1 Introduction;719
130.3;2 Methods and Materials;720
130.4;3 Results;720
130.4.1;3.1 Attention Deficit and Hyperactivity Disorder—ADHD;720
130.4.1.1;3.1.1 Conceptualization, Particulars and Diagnosis;720
130.4.1.2;3.1.2 Comorbidities;720
130.4.2;3.2 Treatment of ADHD;721
130.4.2.1;3.2.1 Multidisciplinary Treatment and Follow-up of the ADHD;721
130.4.2.2;3.2.2 Drugs Prescribed in the Treatment of ADHD;721
130.5;4 Discussion;721
130.6;Conflict of Interest;722
130.7;References;722
131;115 Predicting the Severity of a Mammographic Tumor Using an Artificial Neural Network;724
131.1;Abstract;724
131.2;1 Introduction;724
131.3;2 Materials and Methods;725
131.3.1;2.1 Dataset;725
131.3.2;2.2 Artificial Neural Network;726
131.4;3 Results;726
131.5;4 Conclusion;727
131.6;References;727
132;Author Index;728




