Best Practices and Examples with Python
Buch, Englisch, 306 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 6105 g
ISBN: 978-1-4842-3581-2
Verlag: Apress
This book provides a complete and modern guide to web scraping, using Python as the programming language, without glossing over important details or best practices. Written with a data science audience in mind, the book explores both scraping and the larger context of web technologies in which it operates, to ensure full understanding. The authors recommend web scraping as a powerful tool for any data scientist’s arsenal, as many data science projects start by obtaining an appropriate data set.
Starting with a brief overview on scraping and real-life use cases, the authors explore the core concepts of HTTP, HTML, and CSS to provide a solid foundation. Along with a quick Python primer, they cover Selenium for JavaScript-heavy sites, and web crawling in detail. The book finishes with a recap of best practices and a collection of examples that bring together everything you've learned and illustrate various data science use cases.What You'll Learn
- Leverage well-established best practices and commonly-used Python packages
- Handle today's web, including JavaScript, cookies, and common web scraping mitigation techniques
- Understand the managerial and legal concerns regarding web scraping
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
Weitere Infos & Material
Part I: Web Scraping Basics.- 1. Introduction.- 2. The Web Speaks HTTP.- 3. Stirring the HTML and CSS Soup.- Part II: Advanced Web Scraping.- 4. Delving Deeper in HTTP.- 5. Dealing with JavaScript.- 6. From Web Scraping to Web Crawling.- Part III: Managerial Concerns and Best Practices.- 7. Managerial and Legal Concerns.- 8. Closing Topics.- 9. Examples.