E-Book, Englisch, 770 Seiten
Bagley The Tumor Microenvironment
1. Auflage 2010
ISBN: 978-1-4419-6615-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 770 Seiten
Reihe: Cancer Drug Discovery and Development
ISBN: 978-1-4419-6615-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;The Tumor Microenvironment;3
1.1;Preface;5
1.2;Contents;7
1.3;Contributors;11
1.4;Part I Physiological Parameters;19
1.4.1;Chapter 1: Combination Strategies Targeting Hypoxia Inducible Factor 1 (HIF-1) for Cancer Therapy;20
1.4.1.1;Introduction;20
1.4.1.2;Small Molecule Inhibitors of HIF-1;22
1.4.1.3;Targeting HIF-1: Single Agent or Combination?;25
1.4.1.3.1;Molecularly Targeted Agents and HIF-1 Inhibition;26
1.4.1.3.2;Hypoxic Cells Are More Resistant to Chemotherapy and Radiation Therapy;27
1.4.1.3.2.1;Combination of HIF-1 Inhibitors with Chemotherapy;27
1.4.1.3.2.2;Combination of HIF-1 Inhibitors with Radiation Therapy;28
1.4.1.3.3;Intratumor Hypoxia as a Potential Mechanism of Resistance to Anti-angiogenic Therapies;29
1.4.1.3.3.1;Combination of Anti-angiogenic Therapies and HIF-1 Inhibitors;30
1.4.1.3.4;Cancer Cell Metabolism and the Hypoxic Tumor Microenvironment;31
1.4.1.3.4.1;HIF-1 Inhibitors in Combination Strategies Targeting Tumor Metabolism;31
1.4.1.4;Conclusion;32
1.4.1.5;References;32
1.4.2;Chapter 2: The Tumor Microenvironment: New Insights into Regulation of Tumor pH by Carbonic Anhydrases;39
1.4.2.1;Biological Importance of pH;39
1.4.2.2;Sources of Cellular Acid;41
1.4.2.2.1;Cellular Respiration;41
1.4.2.2.2;The Warburg Effect;42
1.4.2.3;Transport of Acid Across the Surface Membrane;44
1.4.2.3.1;Intracellular and Extracellular pH in Tumors;44
1.4.2.3.2;Regulation of Tumor pH by Membrane Transport;44
1.4.2.3.3;Efflux of Metabolic Acid;45
1.4.2.3.4;Buffering of H+ Ions;46
1.4.2.3.5;Extrusion of H+ Ions;46
1.4.2.3.6;Regulation of pH Using Nonrespiratory Sources of H+ Ions;47
1.4.2.4;Role of Carbonic Anhydrase in Acid-Equivalent Transport;48
1.4.2.4.1;Intracellular and Extracellular Carbonic Anhydrase Isoforms;48
1.4.2.4.2;Facilitated CO2 Diffusion;48
1.4.2.4.3;Facilitated H+ Diffusion;50
1.4.2.4.4;The Transport Metabolon;50
1.4.2.4.5;The Dominant Role for Carbonic Anhydrase in Tumors;51
1.4.2.5;Future Directions and Outlook for Therapy;51
1.4.2.6;References;53
1.4.3;Chapter 3: Hypoxia, Gene Expression, and Metastasis;58
1.4.3.1;The Link Between Hypoxia and Metastasis;59
1.4.3.2;Causes and Consequences of Tumor Hypoxia;60
1.4.3.3;HIF Regulation by Oxygen;61
1.4.3.4;HIF Regulation by Genetic Alterations of Upstream Regulators;62
1.4.3.5;HIF Target Genes Involved in the Metastatic Process;64
1.4.3.6;Hypoxia, Cancer Stem Cells, and Metastasis;66
1.4.3.7;Conclusion;68
1.4.3.8;References;68
1.4.4;Chapter 4: Molecular Mechanisms Regulating Expression and Function of Cancer-Associated Carbonic Anhydrase IX;74
1.4.4.1;Abstract;74
1.4.4.2;Carbonic Anhydrases;74
1.4.4.3;Molecular Features of CA IX;77
1.4.4.4;CA IX Tissue Distribution;79
1.4.4.5;Regulation of CA IX Expression;80
1.4.4.6;Role of CA IX in Cancer;83
1.4.4.7;Clinical Value of CA IX;87
1.4.4.8;CA IX Targeting Strategies;90
1.4.4.9;Conclusion;95
1.4.4.10;References;95
1.4.5;Chapter 5: Glycolytic Pathway as a Target for Tumor Inhibition;106
1.4.5.1;Introduction;106
1.4.5.2;Alterations of Glucose Metabolism in Cancer;109
1.4.5.2.1;Overexpression of Glycolytic Enzymes in Cancer Favors Aerobic Glycolysis;110
1.4.5.2.1.1;GLUT1;110
1.4.5.2.1.2;HKII;111
1.4.5.2.1.3;PFK1;111
1.4.5.2.1.4;PKM2;112
1.4.5.2.1.5;LDH-A;112
1.4.5.2.1.6;The PPP;113
1.4.5.2.2;Mitochondrial Dysfunction and Increased Glycolysis in Cancer;114
1.4.5.2.3;Tumor Microenvironment and Selection of Highly Glycolytic Cancer Cells;115
1.4.5.2.3.1;HIF-1 and Glycolysis;115
1.4.5.2.3.2;HIF-1 and Mitochondria;116
1.4.5.2.4;Mutations of Tumor Suppressor Genes and Metabolic Alterations;118
1.4.5.2.4.1;p53 Regulation of Glycolysis and Mitochondrial Respiration;118
1.4.5.2.4.2;AMPK and Glycolytic Regulation;119
1.4.5.2.5;Activation of Oncogenes and Increased Glycolysis;119
1.4.5.2.5.1;c-Myc;119
1.4.5.2.5.2;Ras;120
1.4.5.2.5.3;PI3K/Akt Pathway;120
1.4.5.3;Glycolytic Pathway as a Target for Tumor Inhibition;121
1.4.5.3.1;2-Deoxyglucose;122
1.4.5.3.2;3-Bromopyruvate;122
1.4.5.3.3;Lonidamine;123
1.4.5.3.4;Oxythiamine and 6-Aminonicotinamide;124
1.4.5.3.5;Dichloroacetate;124
1.4.5.3.6;Other Metabolic Modulators;125
1.4.5.4;Summary;125
1.4.5.5;References;126
1.5;Part II Malignant Cells;134
1.5.1;Chapter 6: Aberrant DNA Methylation in Cancer Cells;135
1.5.1.1;Introduction;135
1.5.1.2;Characteristics of DNA Methylation;136
1.5.1.2.1;Maintenance of DNA Methylation Statuses;136
1.5.1.2.2;Regulation of Gene Transcription by DNA Methylation;138
1.5.1.2.3;Maintenance and De Novo DNA Methylases;139
1.5.1.3;Methylation Alterations in Cancer Cells;139
1.5.1.3.1;Genome-Overall Hypomethylation;139
1.5.1.3.2;Aberrant DNA Methylation of CpG Islands;140
1.5.1.3.3;Driver Methylation and Passenger Methylation;141
1.5.1.4;Possible Involvement of Altered Methylation in Tumor Microenvironments;141
1.5.1.4.1;Unique Natures of Aberrant DNA Methylation, in Contrast with Mutations;141
1.5.1.4.2;Field for Cancerization and DNA Methylation;142
1.5.1.4.3;Epithelial-Mesenchymal Transition and DNA Methylation;142
1.5.1.4.4;Tumor Microenvironments and DNA Methylation;143
1.5.1.5;Epilogue;144
1.5.1.6;References;144
1.5.2;Chapter 7: DNA Repair and Redox Signaling;147
1.5.2.1;Introduction;150
1.5.2.2;Overview of DNA Repair Pathways;151
1.5.2.2.1;DR;151
1.5.2.2.2;BER;153
1.5.2.2.3;MMR;154
1.5.2.2.4;NER;155
1.5.2.2.5;NHEJ Repair;157
1.5.2.2.6;HR;157
1.5.2.3;Overview of Redox Signaling;158
1.5.2.3.1;The Thioredoxin (Trx) System;159
1.5.2.3.2;The Glutaredoxin/Glutathione (GRX/GSH) System;160
1.5.2.3.3;Roles of Redox Systems;160
1.5.2.4;The Redox Activity of APE1;161
1.5.2.4.1;How APE1 Performs Its Redox Functions;162
1.5.2.4.2;APE1-Regulated Transcription Factors and Their Link to DNA Damage Repair;162
1.5.2.4.3;p53;163
1.5.2.4.4;AP-1;166
1.5.2.4.5;HIF-1a;167
1.5.2.5;Other Global Influences of APE1;168
1.5.2.5.1;Cell Survival;169
1.5.2.5.2;Angiogenesis;170
1.5.2.5.3;Inflammation;171
1.5.2.6;DNA Repair in the Tumor Microenvironment;172
1.5.2.7;Modulating APE1’s Activities as a Cancer Therapeutic Approach;173
1.5.2.8;Conclusions;176
1.5.2.9;References;176
1.5.3;Chapter 8: Cancer Stem Cells and Microenvironment;183
1.5.3.1;Introduction;183
1.5.3.2;ESCs: A Prototype Model of Stem Cell Biology;186
1.5.3.3;Stem Cells and Microenvironment;190
1.5.3.4;CSCs and the Microenvironment;192
1.5.3.5;Concluding Remarks;194
1.5.3.6;References;195
1.5.4;Chapter 9: Epithelial–Mesenchymal Transition in Development and Diseases;200
1.5.4.1;Overview of EMT;200
1.5.4.2;Type 1 EMT in the Formation of Mesoderm and Neural Crest;202
1.5.4.2.1;Mesoderm Formation;203
1.5.4.2.2;Neural Crest Formation;204
1.5.4.2.3;MET;204
1.5.4.3;Type 2 EMT in Tissue and Organ Fibrosis;204
1.5.4.3.1;Implications of EMT in Fibrosis;204
1.5.4.3.2;Re-epithelialization of Wounded Skin;205
1.5.4.4;Type 3 EMT in Cancer Metastasis;206
1.5.4.4.1;EMT Stimuli from Tumor Microenvironment;206
1.5.4.4.2;Molecular Regulation of EMT;209
1.5.4.4.3;Signaling Pathways;210
1.5.4.4.4;Cytokines;212
1.5.4.4.5;Hypoxia;214
1.5.4.4.6;EMT Generates Cancer Stem Cells;215
1.5.4.4.7;Genetic and Epigenetic Control of EMT;215
1.5.4.4.8;Micro RNA for EMT;216
1.5.4.5;Perspective;217
1.5.4.6;References;218
1.5.5;Chapter 10: Invasion and Metastasis;225
1.5.5.1;Tumors as Tissues;225
1.5.5.2;Metastatic Disease;226
1.5.5.3;Metastatic Cascades;226
1.5.5.4;Migration, Invasion, and Metastasis;228
1.5.5.5;Rethinking Metastasis;233
1.5.5.6;Conclusions;236
1.5.5.7;References;237
1.5.6;Chapter 11: Dormancy of Disseminated Tumor Cells: Reciprocal Crosstalk with the Microenvironment;241
1.5.6.1;General Concepts on Tumor Cell Dormancy in the Context of Cancer Progression;241
1.5.6.1.1;Dormancy of Micrometastasis;243
1.5.6.1.1.1;Angiogenic Dormancy;243
1.5.6.1.1.2;Immunity-Driven Dormancy of Micrometastasis;246
1.5.6.1.2;Cellular Dormancy;248
1.5.6.2;Cellular Dormancy and the Microenvironment;250
1.5.6.3;Stroma-Associated Factors and Tumor Cell Dormancy;253
1.5.6.3.1;Collagen Matrix Signaling;253
1.5.6.3.2;Hormone Depletion and Dormancy;254
1.5.6.3.3;TGFb Signaling;255
1.5.6.4;Models to Study Dormancy;257
1.5.6.5;References;260
1.6;Part III Vasculature And Stroma;267
1.6.1;Chapter 12: Impact of Endothelial Progenitor Cells on Tumor Angiogenesis and Outcome of Antiangiogenic Therapy: New Perspecti;268
1.6.1.1;Introduction;268
1.6.1.2;The Identification of EPCs;270
1.6.1.3;The Controversy Surrounding Functions of EPCs;270
1.6.1.4;The Controversy About the Definition of EPCs;273
1.6.1.5;EPCs as a Surrogate Biomarker for Antiangiogenic Therapy;275
1.6.1.6;Therapy-Induced EPC Mobilization and Tumor Vessel Incorporation;276
1.6.1.7;Conclusions;280
1.6.1.8;References;280
1.6.2;Chapter 13: Bone Marrow Derived Mesenchymal Stem/Stromal Cells and Tumor Growth;285
1.6.2.1;Introduction;286
1.6.2.2;Characteristics of CAFs;286
1.6.2.3;Bone Marrow Derived MSCs as Source of CAFs;287
1.6.2.4;Alterations in Tumor Associated Stromal Cells;289
1.6.2.5;Implications of MSCs as a Source of CAFs: A Model to Study Tumor Stroma Interactions;290
1.6.2.6;Activation of BMD MSCs and Growth of Tumors;291
1.6.2.6.1;Speculation on Role of Chemokines on Activation of Circulating MSCs and Effect on Tumor Growth in African American Individuals ;291
1.6.2.6.1.1;Lack of DARC Expression, Circulating Chemokines and Pathological Conditions;292
1.6.2.6.1.2;DARC Expression and Cancer in African American Men;293
1.6.2.7;Activation of Bone Marrow-Derived MSCs and Metastasis;293
1.6.2.8;Conclusion;295
1.6.2.9;References;295
1.6.3;Chapter 14: Integrin Signaling in Lymphangiogenesis;299
1.6.3.1;Introduction;299
1.6.3.2;Lyphangiogenesis;300
1.6.3.2.1;Lymphatic Vasculature;300
1.6.3.2.2;Lymphatic Makers;301
1.6.3.2.3;Induction of Lymphangiogenesis;301
1.6.3.2.4;Lymphangiogenesis and Pathology;303
1.6.3.3;Integrins;304
1.6.3.3.1;Integrin Expression and Function;304
1.6.3.3.2;Role of Integrins in Promoting Endothelial Cells Migration, Proliferation, and Survival;306
1.6.3.3.3;Ligand Specificity of Integrins;306
1.6.3.3.4;Integrin Signaling;307
1.6.3.3.4.1;Fak;307
1.6.3.3.4.2;Shc;309
1.6.3.3.4.3;Rho Family of Small GTPases;310
1.6.3.3.4.4;Talin;310
1.6.3.3.4.5;Vinculin;311
1.6.3.3.4.6;Paxillin;311
1.6.3.4;Intergrins and Lymphangiogenesis;311
1.6.3.4.1;a9ß1 ;311
1.6.3.4.2;a1ß1 and a2ß1;312
1.6.3.4.3;a5ß1;312
1.6.3.4.4;a4ß1 ;312
1.6.3.5;Conclusion;313
1.6.3.6;References;313
1.6.4;Chapter 15: Role of Pericytes in Resistance to Antiangiogenic Therapy;320
1.6.4.1;Introduction;320
1.6.4.2;Biology, Physiology, and Pathology of Pericytes;321
1.6.4.3;Pericytes and Tumor Angiogenesis;322
1.6.4.4;Pericytes and Resistance to Antiangiogenic Therapy;324
1.6.4.4.1;VEGF Pathway and Pericytes in Tumor Angiogenesis;324
1.6.4.4.2;Resistance to Antiangiogenic Therapy;324
1.6.4.4.3;Targeting Pericytes for Antivascular Strategies;326
1.6.4.5;Conclusions;327
1.6.4.6;References;329
1.6.5;Chapter 16: Tumour-Promoting Stromal Myofibroblasts in Human Carcinomas;333
1.6.5.1;Introduction;333
1.6.5.2;Myofibroblasts Involved in Tissue Fibrosis Share Characteristics with Tumour-Associated Myofibroblasts;335
1.6.5.3;Carcinoma-Associated Fibroblast Characterised as Tumour-Promoting Myofibroblasts;336
1.6.5.4;Somatic Genetic and Epigenetic Alterations in Tumour-Associated Stroma;339
1.6.5.5;Heterogeneous Cellular Origins of Carcinoma-Associated Myofibroblasts;341
1.6.5.6;Normal Stroma-Derived Tumour-Suppressive Signalling and Tumour Stroma-Derived Tumour-Promoting Signalling;343
1.6.5.7;Tumour-Associated Stroma Promotes Neoangiogenesis;345
1.6.5.8;Roles of Tumour-Associated Stroma in Promoting Cancer Cell Invasion and Metastasis;348
1.6.5.9;Conclusions/Perspectives;350
1.6.5.10;References;351
1.7;Part IV Immune-Mediated Cells;358
1.7.1;Chapter 17: Mast Cells and Tumor Microenvironment;359
1.7.1.1;Introduction;360
1.7.1.2;Mast Cell Biology;362
1.7.1.3;Mast Cells Could Be Beneficial to the Tumor;363
1.7.1.4;Breast Cancer;365
1.7.1.5;Melanoma and Basal Cell Carcinoma;366
1.7.1.6;Pancreatic Cancer;366
1.7.1.7;Lung Cancer;367
1.7.1.8;Mast Cells Could be Detrimental to the Tumor;368
1.7.1.9;Conclusion;369
1.7.1.10;References;370
1.7.2;Chapter 18: Macrophages in the Tumor Microenvironment;377
1.7.2.1;Pro-tumor Aspects;378
1.7.2.1.1;Immunosuppressive Phenotype;379
1.7.2.1.2;Macrophages and Inflammation;381
1.7.2.1.3;Role in Angiogenesis and Metastasis;382
1.7.2.2;Anti-tumor Potential/.Therapeutic Implications;385
1.7.2.3;References;386
1.7.3;Chapter 19: The Prognostic Significance of Tumor-Infiltrating Lymphocytes;390
1.7.3.1;Introduction;390
1.7.3.2;Antitumor Functions of T Lymphocytes;391
1.7.3.2.1;CD8+ T Cells;392
1.7.3.2.2;CD4+ T Cells;393
1.7.3.2.2.1;CD4+ T Cells Help for Cytotoxic T Lymphocytes Induction;394
1.7.3.2.2.2;CD4+ T Cells for Maintenance of a Cytotoxic T Lymphocytes Response;396
1.7.3.2.2.3;CD4+ T Cells for the Induction and Maintenance of CD8+ T Cell Memory Responses;396
1.7.3.2.2.4;T helper 1 Versus T helper 2 Responses for Antitumor Immunity;397
1.7.3.3;Regulatory CD4+ Cells;398
1.7.3.3.1;Existence of Different Types of CD4+ Regulatory T Cells In Vivo;399
1.7.3.3.2;Markers to Identify CD4+ Regulatory T Cells In Vivo;399
1.7.3.3.3;Tumor-Induced CD4+ Regulatory T Cells;400
1.7.3.3.4;CD4+CD25+ Regulatory T Cells in Mice and Human;401
1.7.3.3.5;Suppression Occurred Inside Tumor Tissues;402
1.7.3.3.6;Origins of Tumor-Induced CD4+ Regulatory T Cells;403
1.7.3.4;Th17 Cells;403
1.7.3.5;Other Aspects That Complicate the Relationship Between the Tumor-Infiltrating Lymphocytes and Prognosis;404
1.7.3.6;Targeted Tumor Tissues to Recruit and Train T Cells;406
1.7.3.7;Concluding Remarks;407
1.7.3.8;References;408
1.7.4;Chapter 20: The Pro-inflammatory Milieu and Its Role in Malignant Epithelial Initiation;413
1.7.4.1;Introduction;414
1.7.4.2;Acute Versus Chronic Inflammation in the Context of the Tumor Microenvironment;415
1.7.4.3;Malignant Epithelial Initiation Within a Pro-inflammatory Milieu;418
1.7.4.4;Tumor Immune Evasion and Progression Within Sustained Chronic Inflammation;419
1.7.4.5;Tumor Progression, Metastatic Potential, and Inflammation;420
1.7.4.6;Soluble Mediators of the Immune Response in the Pro-inflammatory Milieu Responsible for Cancer Development as well as Maintena;421
1.7.4.7;Oxidative Stress Species and Their Functional Significance in Cancer Development;421
1.7.4.8;The Role of Matrix Remodeling Proteases in the Tumor Microenvironment;422
1.7.4.9;Functional Significance of Specific Transcription Factors and Primary Inflammatory Cytokines;423
1.7.4.10;Functional Significance of Myeloid Cell Recruitment Within Tumors;426
1.7.4.11;Relationship of Bone Marrow-Derived Cells and the Tumor Microenvironment;428
1.7.4.12;Conclusion;428
1.7.4.13;References;429
1.7.5;Chapter 21: Natural Killer Cells for Adoptive Immunotherapy;435
1.7.5.1;Introduction;435
1.7.5.2;Immunophenotype;436
1.7.5.2.1;Ontogeny;436
1.7.5.3;Localization and Trafficking;437
1.7.5.4;Activation of NK Cells by Cytokines and Accessory Cells;438
1.7.5.5;Cytokine Secretion;438
1.7.5.6;Cytotoxicity;439
1.7.5.7;Activating and Inhibitory Signals;439
1.7.5.8;Activating Receptors;440
1.7.5.9;Licensing;441
1.7.5.10;NK Cells and Anti-tumor Response;441
1.7.5.11;Tumor Infiltrating Lymphocytes;442
1.7.5.12;NK Cells and Haploidentical Transplantation;442
1.7.5.12.1;Umbilical Cord Transplantation;444
1.7.5.12.2;Non-myeloablative Transplantation;444
1.7.5.13;Killer Cell Immunotherapy;445
1.7.5.13.1;NK Cell Adoptive Therapy;445
1.7.5.13.1.1;Haploidentical NK Cells;445
1.7.5.13.1.2;In Vitro NK Cell Expansion;446
1.7.5.13.1.3;Alternative NK Cell Sources;447
1.7.5.13.1.4;NK Cell Lines;447
1.7.5.13.1.5;Engraftment and In Vivo Expansion of Adoptively Transferred NK Cells;448
1.7.5.13.1.6;Adjunctive Strategies;448
1.7.5.13.1.7;Host Factors;449
1.7.5.14;Summary;449
1.7.5.15;References;450
1.8;Part V Extracellular Matrix;459
1.8.1;Chapter 22: Fibronectin;460
1.8.1.1;The Tumor Stroma;460
1.8.1.2;Fibronectin;461
1.8.1.2.1;Molecular Structure of Fibronectin;461
1.8.1.2.2;Gene Structure and FN-Knock Out;461
1.8.1.2.3;Synthesis and Matrix Assembly;462
1.8.1.2.4;Fibronectin Knock Out Mice and Phenotype;463
1.8.1.3;Fibronectin and Cancer;464
1.8.1.3.1;Fibronectin and Tumor Growth;464
1.8.1.3.2;Tumor Angiogenesis;465
1.8.1.3.3;EDB-FN in Tumor Growth and Angiogenesis;465
1.8.1.3.4;Potential Function of the EDB-Domain;466
1.8.1.3.5;EDA-FN in Tumor Growth and Angiogenesis;466
1.8.1.3.6;EDA/EDB-Double Null Mutants;467
1.8.1.3.7;Cryptic Site Exposure as a Result of EDB Alternative Splicing;467
1.8.1.3.8;FN as a Modulator of Tumor Invasion and Metastasis;468
1.8.1.3.9;Migration-Stimulating Factor;468
1.8.1.4;FN and Tumor Dormancy;469
1.8.1.5;Fibronectin: Beyond Fibrils;470
1.8.1.6;Therapeutic Interventions;470
1.8.1.6.1;Targeted Delivery to FN Isoforms;471
1.8.1.6.2;Anti-a5b1 Integrin Function-Blocking Antibody (Volociximab);472
1.8.1.6.3;Endogenous Inhibitors of Angiogenesis;472
1.8.1.6.3.1;Endostatin and Tumstatin;472
1.8.1.6.3.2;Anastellin (III1-C);473
1.8.1.7;References;473
1.8.2;Chapter 23: Collagen in Cancer;480
1.8.2.1;The Collagen Family of Proteins;480
1.8.2.2;The Extracellular Matrix;482
1.8.2.3;Role of Collagen in Cancer: Overview;484
1.8.2.3.1;Adhesion Receptor Binding to Collagen;486
1.8.2.3.2;Protein–Collagen Interactions;491
1.8.2.3.3;Matrix Metalloproteinases;494
1.8.2.3.4;Collagen Fragments;496
1.8.2.3.5;Fibronectin Fragments;499
1.8.2.4;References;500
1.8.3;Chapter 24: Integrins and Cancer;511
1.8.3.1;Integrin Structure and Function;512
1.8.3.1.1;Background;512
1.8.3.1.2;Focal Adhesion Kinase;512
1.8.3.1.3;Integrin-Linked Kinase;515
1.8.3.2;Integrins, Motility, and Invasion;516
1.8.3.3;Integrins and Epithelial–Mesenchymal Transition;519
1.8.3.4;Integrins, Mechanotransduction, and Cancer;522
1.8.3.5;Integrin Signaling as a Therapeutic Target;523
1.8.3.6;References;525
1.8.4;Chapter 25: Matrix Metalloproteinases and Cancer Cell Invasion/Metastasis;532
1.8.4.1;Introduction;532
1.8.4.2;Classification of Proteases;533
1.8.4.3;MMP Biology;533
1.8.4.4;MMP Chemistry;534
1.8.4.5;Natural Inhibitors of MMPs;536
1.8.4.6;Regulation of MMP Function;536
1.8.4.7;Participation of MMPs in Various Aspects of Cancer;539
1.8.4.7.1;Gene Expression Signatures in Cancer;540
1.8.4.7.2;Anticancer Effects of MMPs;541
1.8.4.8;Stromal Cell Production of MMPs: Contribution to Cancer Progression;542
1.8.4.8.1;MMP Involvement in Tumor Angiogenesis;543
1.8.4.9;Involvement of MMPs in Transition to an Invasive/Metastatic Cancer Phenotype;544
1.8.4.9.1;Cancer Cell Invasion in a Three-Dimensional Matrix;544
1.8.4.9.2;Protease-Independent Cell Invasion: Fact or Fantacy;546
1.8.4.9.3;Epithelial-to-Mesenchymal Transition in Cancer;546
1.8.4.9.4;Premetastatic Niche;547
1.8.4.10;Inflammation and Cancer: Role of MMPs;548
1.8.4.11;MMPs as Therapeutic Targets in Cancer;548
1.8.4.11.1;Exocyte Binding and Alosteric Inhibitors of MMPs;550
1.8.4.11.2;RNA Interference (RNAi) Technology to Target MMPs in Cancer;550
1.8.4.12;References;551
1.8.5;Chapter 26: Tetraspanins and Cancer Metastasis;556
1.8.5.1;Structure, Organization, and Major Functions of Tetraspanins;557
1.8.5.1.1;The Structure of Tetraspanins;557
1.8.5.1.2;The Tetraspanin Web;557
1.8.5.1.3;Major Functional Activities of Tetraspanins: Migration and Membrane Fusion;561
1.8.5.2;Tetraspanins, Metastasis, Angiogenesis, and Thrombosis;563
1.8.5.2.1;Metastasis and Angiogenesis;563
1.8.5.2.2;Tetraspanins and Metastasis Suppression;564
1.8.5.2.2.1;The Metastasis Suppressor Gene CD82/KAI1 and Tumor Cell Migration;564
1.8.5.2.2.2;CD9 Interferes with Distinct Steps of the Metastatic Cascade;567
1.8.5.2.2.3;CD81 and CD63 and Metastasis Suppression;570
1.8.5.2.3;Tetraspanins and Tumor Progression;571
1.8.5.2.3.1;CD151 and Tumor Cell Motility;571
1.8.5.2.3.2;Tspan8 and Metastasis;573
1.8.5.2.4;Tetraspanins, Premetastatic Niche, Angiogenesis, Thrombosis, and Exosomes;574
1.8.5.2.4.1;Tetraspanins and Exosomes;574
1.8.5.2.4.2;Tetraspanins and the Premetastatic Niche;576
1.8.5.2.4.3;Tetraspanins and Angiogenesis;577
1.8.5.3;Tetraspanins and Cancer Therapy;579
1.8.5.3.1;Rescuing the Metastasis Suppressor Gene CD82;579
1.8.5.3.2;Interfering with Metastasis-Promoting Activities of Tetraspanins;580
1.8.5.4;Conclusion;581
1.8.5.5;References;583
1.9;Part VI Secreted Proteins;600
1.9.1;Chapter 27: Chemokines and Metastasis;601
1.9.1.1;Introduction;601
1.9.1.2;Chemokines and Their Receptors;603
1.9.1.3;Chemokines on Leukocyte Recruitment and Activation in Malignant Tumors;608
1.9.1.4;Chemokines in Tumor Angiogenesis;610
1.9.1.5;Chemokines in Tumor Growth and Metastasis;613
1.9.1.6;Chemokines Targeting and Chemotherapy;617
1.9.1.7;Conclusion and Future Perspective;618
1.9.1.8;References;618
1.9.2;Chapter 28: Transforming Growth Factor-b in Lung Cancer, Carcinogenesis, and Metastasis;632
1.9.2.1;Introduction;632
1.9.2.2;Transforming Growth Factor-b Signaling;635
1.9.2.3;Transforming Growth Factor-b Isoforms;637
1.9.2.4;Transforming Growth Factor-b Receptors;639
1.9.2.5;Smads;644
1.9.2.6;Microenvironment;645
1.9.2.7;Epithelial-to-Mesenchymal Transition;648
1.9.2.8;Immune System;652
1.9.2.9;Drugs, Treatments, and Therapies;653
1.9.2.10;Genomics;657
1.9.2.11;Animal Models;659
1.9.2.12;Conclusions;663
1.9.2.13;References;664
1.9.3;Chapter 29: Cooperative Interactions Between Integrins and Growth Factor Signaling in Pathological Angiogenesis;671
1.9.3.1;Introduction;671
1.9.3.2;Blood Vessel Formation;673
1.9.3.2.1;Pathological Angiogenesis;674
1.9.3.3;Integrins and Their ECM Ligands in Angiogenesis;675
1.9.3.4;Modulation of Growth Factor/Growth Factor Receptor Systems within Different Tissue Microenvironments;677
1.9.3.4.1;Integrin–ECM Interactions Regulate Growth Factor Expression and Bio-distribution;677
1.9.3.4.2;Modulation of Growth Factor Signaling by Integrins;679
1.9.3.5;Integrin/Growth Factor Cooperation in Angiogenesis;680
1.9.3.6;Integrin/Growth Factor Receptor Cooperation in Angiogenesis;683
1.9.3.7;Conclusions;686
1.9.3.8;References;687
1.9.4;Chapter 30: The Extracellular Matrix and the Growth and Survival of Tumors;692
1.9.4.1;Introduction;692
1.9.4.2;Mechanical Forces and the ECM in Cancer Progression;693
1.9.4.3;Contact Between ECM and Tumor Cells Regulates Proliferation and Survival;695
1.9.4.3.1;Regulation of Tumor Cell Proliferation by ECM Proteins;695
1.9.4.3.2;Regulation of Apoptosis by ECM Proteins;696
1.9.4.3.3;Stimulation of Apoptosis by ECM Proteins;697
1.9.4.4;Proteolytic Modification of the ECM and Tumor Growth and Survival;698
1.9.4.4.1;Proteolytic Modification of the ECM and Cancer Progression;698
1.9.4.4.2;Proteolytic Modification of the ECM Reveals Cryptic Domains in ECM Proteins (Matricryptins);699
1.9.4.4.3;Proteolytic Modification of the ECM Releases Soluble Active Peptides (Matrikines);699
1.9.4.4.4;Proteolytic Degradation of the ECM Releases Soluble Growth Factors;701
1.9.4.5;Clinical Implications;702
1.9.4.5.1;Broad Inhibitors of ECM Degradation;702
1.9.4.5.2;Integrin Inhibitors;702
1.9.4.5.3;Protease Inhibitors;703
1.9.4.5.4;Angiogenesis Inhibitors;703
1.9.4.6;Conclusion;704
1.9.4.7;References;704
1.9.5;Chapter 31: Secreted Growth Factors as Therapeutic Targets;708
1.9.5.1;Pro-angiogenic and Lymphangiogenic Factors;709
1.9.5.2;Pro-stromal Factors;715
1.9.5.3;Immune System Modulators;718
1.9.5.4;Malignant Cell Growth Factors;719
1.9.5.5;References;725
1.9.6;Chapter 32: Adrenomedullin;730
1.9.6.1;Structure and Function;730
1.9.6.2;Angiogenesis;732
1.9.6.3;Adrenomedullin in Cancer;734
1.9.6.3.1;Breast Cancer;734
1.9.6.3.2;Central Nervous System;735
1.9.6.3.3;Endometrial Cancer;735
1.9.6.3.4;Lung Cancer;736
1.9.6.3.5;Mast Cells and the Tumor Microenvironment;736
1.9.6.3.6;Ovarian Cancer;737
1.9.6.3.7;Pancreatic Cancer;737
1.9.6.3.8;Prostate Cancer;739
1.9.6.3.9;Renal Cancer;740
1.9.6.4;Adrenomedullin as a Therapeutic Target;741
1.9.6.5;Conclusion;742
1.9.6.6;References;742
1.10;Index;746




