Bakushinsky / Kokurin / Smirnova | Iterative Methods for Ill-Posed Problems | E-Book | sack.de
E-Book

E-Book, Englisch, Band 54, 147 Seiten

Reihe: Inverse and Ill-Posed Problems SeriesISSN

Bakushinsky / Kokurin / Smirnova Iterative Methods for Ill-Posed Problems

An Introduction
1. Auflage 2010
ISBN: 978-3-11-025065-7
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark

An Introduction

E-Book, Englisch, Band 54, 147 Seiten

Reihe: Inverse and Ill-Posed Problems SeriesISSN

ISBN: 978-3-11-025065-7
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark



Ill-posed problems are encountered in countless areas of real world science and technology. A variety of processes in science and engineering is commonly modeled by algebraic, differential, integral and other equations. In a more difficult case, it can be systems of equations combined with the associated initial and boundary conditions.

Frequently, the study of applied optimization problems is also reduced to solving the corresponding equations. These equations, encountered both in theoretical and applied areas, may naturally be classified as operator equations. The current textbook will focus on iterative methods for operator equations in Hilbert spaces.

Bakushinsky / Kokurin / Smirnova Iterative Methods for Ill-Posed Problems jetzt bestellen!

Zielgruppe


Mathematical Physicists, Theoretical Physicists, Mathematicians; / Mathematical physicists, theoretical physicists, mathematicians;

Weitere Infos & Material


Frontmatter
Preface
Contents
1 The regularity condition. Newton’s method
2 The Gauss–Newton method
3 The gradient method
4 Tikhonov’s scheme
5 Tikhonov’s scheme for linear equations
6 The gradient scheme for linear equations
7 Convergence rates for the approximation methods in the case of linear irregular equations
8 Equations with a convex discrepancy functional by Tikhonov’s method
9 Iterative regularization principle
10 The iteratively regularized Gauss–Newton method
11 The stable gradient method for irregular nonlinear equations
12 Relative computational efficiency of iteratively regularized methods
13 Numerical investigation of two-dimensional inverse gravimetry problem
14 Iteratively regularized methods for inverse problem in optical tomography
15 Feigenbaum’s universality equation
16 Conclusion
References
Index


Bakushinsky, Anatoly B.
Anatoly Bakushinsky, Institute of System Analysis of Institute of Russian Academy of Sciences (ISA RAS), Moscow, Russia;

Kokurin, Mihail Yu.
Mihail Yu. Kokurin, Mari State University, Russia;

Smirnova, Alexandra
Alexandra Smirnova, Georgia State University, Atlanta, Georgia, USA.

Anatoly B. Bakushinsky, Institute of System Analysis, Russian Academy of Sciences, Moscow, Russia; Mihail Yu. Kokurin, Mari State Technical University, Yoshkar-Ola, Russia; Alexandra Smirnova, Georgia State University, Atlanta, Georgia, USA.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.