Buch, Englisch, Band 2766, 227 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g
Buch, Englisch, Band 2766, 227 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-540-40722-5
Verlag: Springer Berlin Heidelberg
Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains.
This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques.
Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Sozialwissenschaften Psychologie Allgemeine Psychologie Biologische Psychologie, Neuropsychologie
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Klinische und Innere Medizin Neurologie, Klinische Neurowissenschaft
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
Weitere Infos & Material
I. Theory.- Neurobiological Background.- Related Work.- Neural Abstraction Pyramid Architecture.- Unsupervised Learning.- Supervised Learning.- II. Applications.- Recognition of Meter Values.- Binarization of Matrix Codes.- Learning Iterative Image Reconstruction.- Face Localization.- Summary and Conclusions.