Buch, Englisch, 250 Seiten, Format (B × H): 152 mm x 234 mm, Gewicht: 440 g
Buch, Englisch, 250 Seiten, Format (B × H): 152 mm x 234 mm, Gewicht: 440 g
ISBN: 978-0-12-805320-1
Verlag: Elsevier Science
High-Order Models in Semantic Image Segmentation reviews recent developments in optimization-based methods for image segmentation, presenting several geometric and mathematical models that underlie a broad class of recent segmentation techniques. Focusing on impactful algorithms in the computer vision community in the last 10 years, the book includes sections on graph-theoretic and continuous relaxation techniques, which can compute globally optimal solutions for many problems. The book provides a practical and accessible introduction to these state-of -the-art segmentation techniques that is ideal for academics, industry researchers, and graduate students in computer vision, machine learning and medical imaging.
Zielgruppe
<p>Computer scientists, electronic and biomedical engineers researching in computer vision, medical imaging, machine learning; graduate students in these fields.</p>
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
1. Introductory Background
2. Basic segmentation models
3. Standard optimization techniques
4. High-order models
5. Advanced optimization: Auxiliary functions and pseudo bounds
6. Advanced optimization: Trust region
7. Medical imaging applications
8. Appendix