Bercovici / Timotin / Katsoulis | Recent Advances in Operator Theory and Operator Algebras | Buch | 978-1-138-03021-3 | sack.de

Buch, Englisch, 166 Seiten, Format (B × H): 240 mm x 161 mm, Gewicht: 392 g

Bercovici / Timotin / Katsoulis

Recent Advances in Operator Theory and Operator Algebras


1. Auflage 2017
ISBN: 978-1-138-03021-3
Verlag: Taylor & Francis Ltd

Buch, Englisch, 166 Seiten, Format (B × H): 240 mm x 161 mm, Gewicht: 392 g

ISBN: 978-1-138-03021-3
Verlag: Taylor & Francis Ltd


This book will contain lectures given by four eminent speakers at the Recent Advances in Operator Theory and Operator Algebras conference held at the Indian Statistical Institute, Bangalore, India in 2014. The main aim of this book is to bring together various results in one place with cogent introduction and references for further study.

Bercovici / Timotin / Katsoulis Recent Advances in Operator Theory and Operator Algebras jetzt bestellen!

Weitere Infos & Material


Operator theory and Schubert calculus. Three questions in operator theory. Schubert calculus. The Littlewood-Richardson rule. Practical intersection theory. Back to operators. Bibliography. Non-Self adjoint Operator Algebras: dynamics, classi_cation and C_-envelopes. Introduction. Examples. C*correspondences. Adding tails to a C_-correspondence. The C_-envelope of an operator algebra. Dynamics and classi_cation of operator algebras. Crossed products of operator algebras. Local maps and representation theory. Bibliography. An introduction to Sofic entropy. Introduction. Internal and external approximation. Amenable measure entropy. Amenable topological entropy. Sofic measure entropy. Sofic topological entropy. Dualizing Sofic measure entropy. Algebraic actions. Further developments. Bibliography. The solution of the Kadison-Singer Problem: yet another presentation. Introduction. The Kadison-Singer problem. Intermezzo: what we will do next and why. Analytic functions and univariate polynomials. Several variables: real stable polynomials. Characteristic and mixed characteristic polynomials. Randomisation. Proof of the Paving Conjecture. Final Remarks. Bibliography.


Hari Bercovici is a Professor in the Department of Mathematics at the Indian University Bloomington, USA.David Kerr is Professor in the Department of Mathematics at the Texas A&M University, USA.Elias G Katsoulis is a Professor in the Department of Mathematics at the East Carolina University, USA.Dan Grigore Timotin is a Professor at the Institute of Mathematics of the Romanian Academy, Romania.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.