Bergson | Time and Free Will (Annotated Edition) | E-Book | www.sack.de
E-Book

E-Book, Englisch, 137 Seiten

Bergson Time and Free Will (Annotated Edition)


1. Auflage 2018
ISBN: 978-80-268-9681-4
Verlag: e-artnow
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 137 Seiten

ISBN: 978-80-268-9681-4
Verlag: e-artnow
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Time and Free Will essay deals with the problem of free will, which Bergson contends is merely a common confusion among philosophers caused by an illegitimate translation of the unextended into the extended, as a means of introducing his theory of duration, which would become highly influential among continental philosophers in the following century.

Henri-Louis Bergson was a French philosopher who was influential in the tradition of continental philosophy, especially during the first half of the 20th century until World War II. Bergson is known for his influential arguments that processes of immediate experience and intuition are more significant than abstract rationalism and science for understanding reality. He was awarded the 1927 Nobel Prize in Literature 'in recognition of his rich and vitalizing ideas and the brilliant skill with which they have been presented'. In 1930 France awarded him its highest honour, the Grand-Croix de la Legion d'honneur.
Bergson Time and Free Will (Annotated Edition) jetzt bestellen!

Weitere Infos & Material


CHAPTER II
THE MULTIPLICITY OF CONSCIOUS STATES1


THE IDEA OF DURATION


What is number?

Number maybe defined in general as a collection of units, or, speaking more exactly, as the synthesis of the one and the many. Every number is one, since it is brought before the mind by a simple intuition and is given a name; but the unity which attaches to it is that of a sum, it covers a multiplicity of parts which can be considered separately. Without attempting for the present any thorough examination of these conceptions of unity and multiplicity, let us inquire whether the idea of number does not imply the representation of something else as well.

The units which make up a number must be identical.

It is not enough to say that number is a collection of units; we must add that these units are identical with one another, or at least that they are assumed to be identical when they are counted. No doubt we can count the sheep in a flock and say that there are fifty, although they are all different from one another and are easily recognized by the shepherd: but the reason is that we agree in that case to neglect their individual differences and to take into account only what they have in common. On the other hand, as soon as we fix our attention on the particular features of objects or individuals, we can of course make an enumeration of them, but not a total. We place ourselves at these two very different points of view when we count the soldiers in a battalion and when we call the roll. Hence we may conclude that the idea of number implies the simple intuition of a multiplicity of parts or units, which are absolutely alike.

But they must also be distinct.

And yet they must be somehow distinct from one another, since otherwise they would merge into a single unit. Let us assume that all the sheep in the flock are identical; they differ at least by the position which they occupy in space, otherwise they would not form a flock. But now let us even set aside the fifty sheep themselves and retain only the idea of them. Either we include them all in the same image, and it follows as a necessary consequence that we place them side by side in an ideal space, or else we repeat fifty times in succession the image of a single one, and in that case it does seem, indeed, that the series lies in duration rather than in space. But we shall soon find out that it cannot be so. For if we picture to ourselves each of the sheep in the flock in succession and separately, we shall never have to do with more than a single sheep. In order that the number should go on increasing in proportion as we advance, we must retain the successive images and set them alongside each of the new units which we picture to ourselves: now, it is in space that such a juxtaposition takes place and not in pure duration. In fact, it will be easily granted that counting material objects means thinking all these objects together, thereby leaving them in space. But does this intuition of space accompany every idea of number, even of an abstract number?

We can not form an image or idea of number without the accompanying intuition of space.

Any one can answer this question by reviewing the various forms which the idea of number has assumed for him since his childhood. It will be seen that we began by imagining e.g. a row of balls, that these balls afterwards became points, and, finally, this image itself disappeared, leaving behind it, as we say, nothing but abstract number. But at this very moment we ceased to have an image or even an idea of it; we kept only the symbol which is necessary for reckoning and which is the conventional way of expressing number. For we can confidently assert that 12 is half of 24 without thinking either the number 12 or the number 24: indeed, as far as quick calculation is concerned, we have everything to gain by not doing so. But as soon as we wish to picture number to ourselves, and not merely figures or words, we are compelled to have recourse to an extended image. What leads to misunderstanding on this point seems to be the habit we have fallen into of counting in time rather than in space. In order to imagine the number 50, for example, we repeat all the numbers starting from unity, and when we have arrived at the fiftieth, we believe we have built up the number in duration and in duration only. And there is no doubt that in this way we have counted moments of duration rather than points in space; but the question is whether we have not counted the moments of duration by means of points in space. It is certainly possible to perceive in time, and in time only, a succession which is nothing but a succession, but not an addition, i.e. a succession which culminates in a sum. For though we reach a sum by taking into account a succession of different terms, yet it is necessary that each of these terms should remain when we pass to the following, and should wait, so to speak, to be added to the others: how could it wait, if it were nothing but an instant of duration? And where could it wait if we did not localize it in space? We involuntarily fix at a point in space each of the moments which we count, and it is only on this condition that the abstract units come to form a sum. No doubt it is possible, as we shall show later, to conceive the successive moments of time independently of space; but when we add to the present moment those which have preceded it, as is the case when we are adding up units, we are not dealing with these moments themselves, since they have vanished for ever, but with the lasting traces which they seem to have left in space on their passage through it. It is true that we generally dispense with this mental image, and that, after having used it for the first two or three numbers, it is enough to know that it would serve just as well for the mental picturing of the others, if we needed it. But every clear idea of number implies a visual image in space; and the direct study of the units which go to form a discrete multiplicity will lead us to the same conclusion on this point as the examination of number itself.

All unity is the unity of a simple act of the mind. Unity divisible only because regarded as extended in space.

Every number is a collection of units, as we have said, and on the other hand every number is itself a unit, in so far as it is a synthesis of the units which compose it. But is the word unit taken in the same sense in both cases? When we assert that number is a unit, we understand by this that we master the whole of it by a simple and indivisible intuition of the mind; this unity thus includes a multiplicity, since it is the unity of a whole. But when we speak of the units which go to form number, we no longer think of these units as sums, but as pure, simple, irreducible units, intended to yield the natural series of numbers by an indefinitely continued process of accumulation. It seems, then, that there are two kinds of units, the one ultimate, out of which a number is formed by a process of addition, and the other provisional, the number so formed, which is multiple in itself, and owes its unity to the simplicity of the act by which the mind perceives it. And there is no doubt that, when we picture the units which make up number, we believe that we are thinking of indivisible components: this belief has a great deal to do with the idea that it is possible to conceive number independently of space. Nevertheless, by looking more closely into the matter, we shall see that all unity is the unity of a simple act of the mind, and that, as this is an act of unification, there must be some multiplicity for it to unify. No doubt, at the moment at which I think each of these units separately, I look upon it as indivisible, since I am determined to think of its unity alone. But as soon as I put it aside in order to pass to the next, I objectify it, and by that very deed I make it a thing, that is to say, a multiplicity. To convince oneself of this, it is enough to notice that the units by means of which arithmetic forms numbers are provisional units, which can be subdivided without limit, and that each of them is the sum of fractional quantities as small and as numerous as we like to imagine. How could we divide the unit, if it were here that ultimate unity which characterizes a simple act of the mind? How could we split it up into fractions whilst affirming its unity, if we did not regard it implicitly as an extended object, one in intuition but multiple in space? You will never get out of an idea which you have formed anything which you have not put into it; and if the unity by means of which you make up your number is the unity of an act and not of an object, no effort of analysis will bring out of it anything but unity pure and simple. No doubt, when you equate the number 3 to the sum of 1 + 1 + 1, nothing prevents you from regarding the units which compose it as indivisible: but the reason is that you do not choose to make use of the multiplicity which is enclosed within each of these units. Indeed, it is probable that the number 3 first assumes to our mind this simpler shape, because we think rather of the way in which we have obtained it than of the use which we might make of it. But we soon perceive that, while all multiplication implies the possibility of treating any number whatever as a provisional unit which can be added to itself, inversely the units in their turn are true numbers which are as big as we like, but are regarded as provisionally indivisible for the purpose of compounding them with one another. Now, the very admission that it is possible to divide the unit into as many parts as we like, shows that we...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.