From Statistical Theory to Industrial Practice
Buch, Englisch, 481 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 916 g
ISBN: 978-3-030-74941-5
Verlag: Springer International Publishing
This richly illustrated book describes statistical extreme value theory for the quantification of natural hazards, such as strong winds, floods and rainfall, and discusses an interdisciplinary approach to allow the theoretical methods to be applied. The approach consists of a number of steps: data selection and correction, non-stationary theory (to account for trends due to climate change), and selecting appropriate estimation techniques based on both decision-theoretic features (e.g., Bayesian theory), empirical robustness and a valid treatment of uncertainties. It also examines and critically reviews alternative approaches based on stochastic and dynamic numerical models, as well as recently emerging data analysis issues and presents large-scale, multidisciplinary, state-of-the-art case studies.
Intended for all those with a basic knowledge of statistical methods interested in the quantification of natural hazards, the book is also a valuable resource for engineers conducting risk analyses in collaboration with scientists from other fields (such as hydrologists, meteorologists, climatologists).
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Geowissenschaften Geologie Geologie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Produktionstechnik
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Geowissenschaften Umweltwissenschaften Naturgewalten & Katastrophen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
1 E. Garnier: Extreme Events and History: for a better consideration of natural hazards.- 2 N. Bousquet and P. Bernardara: Introduction.- Part I Standard Extreme Value Theory.- 3 P. Bernardara and N. Bousquet: Probabilistic modeling and statistical quantification of natural hazards.- 4 N. Bousquet: Fundamental concepts of probability and statistics.- 5 M. Andreewsky and N. Bousquet: Collecting and analyzing data.- 6 A. Dutfoy: Univariate extreme value theory: practice and limitations.- Part II Elements of Extensive Statistical Analysis.- 7 J. Weiss and M. Andreewsky: Regional extreme value analysis.- 8 S. Parey, T. Hoang: Extreme values of non-stationary time series.- 9 A. Dutfoy: Multivariate extreme value theory: practice and limits.- 10 S., T. Hoang and N. Bousquet: Stochastic and physics-based simulation of extreme situations.- 11 N. Bousquet: Bayesian extreme value theory.- 12 M. Andreewsky, P. Bernardara, N. Bousquet, A. Dutfoy and S. Parey: Perspectives.- Part III Detailed CaseStudies on Natural Hazards.- 13 P. Bernardara: Predicting extreme ocean swells.- 14 M. Andreewsky: Predicting storm surges.- 15 S. Parey: Forecasting extreme winds.- 16 N. Roche and A. Dutfoy: Conjunction of rainfall in neighboring watersheds.- 17 A. Sibler and A. Dutfoy: Conjunction of a flood and a storm.- 18 E. Paquet: SCHADEX: an alternative to extreme value statistics in hydrology.- Appendix A.- Appendix B.- References.- Index.