Buch, Englisch, 494 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 904 g
Reihe: Chapman & Hall/CRC Monographs and Research Notes in Mathematics
Buch, Englisch, 494 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 904 g
Reihe: Chapman & Hall/CRC Monographs and Research Notes in Mathematics
ISBN: 978-1-4822-4515-8
Verlag: Chapman and Hall/CRC
Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred since the publication of its popular predecessor.
New to the Second Edition
- New chapter on normal holonomy of complex submanifolds
- New chapter on the Berger–Simons holonomy theorem
- New chapter on the skew-torsion holonomy system
- New chapter on polar actions on symmetric spaces of compact type
- New chapter on polar actions on symmetric spaces of noncompact type
- New section on the existence of slices and principal orbits for isometric actions
- New subsection on maximal totally geodesic submanifolds
- New subsection on the index of symmetric spaces
The book uses the reduction of codimension, Moore’s lemma for local splitting, and the normal holonomy theorem to address the geometry of submanifolds. It presents a unified treatment of new proofs and main results of homogeneous submanifolds, isoparametric submanifolds, and their generalizations to Riemannian manifolds, particularly Riemannian symmetric spaces.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Basics of Submanifold Theory in Space Forms. Submanifold Geometry of Orbits. The Normal Holonomy Theorem. Isoparametric Submanifolds and Their Focal Manifolds. Rank Rigidity of Submanifolds and Normal Holonomy of Orbits. Homogeneous Structures on Submanifolds. Normal Holonomy of Complex Submanifolds. The Berger–Simons Holonomy Theorem. The Skew-Torsion Holonomy Theorem. Submanifolds of Riemannian Manifolds. Submanifolds of Symmetric Spaces. Polar Actions on Symmetric Spaces of Compact Type. Polar Actions on Symmetric Spaces of Noncompact Type. Appendix.