Buch, Englisch, 510 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1630 g
Reihe: Classics in Mathematics
Buch, Englisch, 510 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1630 g
Reihe: Classics in Mathematics
ISBN: 978-3-540-74120-6
Verlag: Springer Berlin Heidelberg
Einstein's equations stem from General Relativity. In the context of Riemannian manifolds, an independent mathematical theory has developed around them. Recently, it has produced several striking results, which have been of great interest also to physicists. This Ergebnisse volume is the first book which presents an up-to-date overview of the state of the art in this field. "Einstein Manifold"s is a successful attempt to organize the abundant literature, with emphasis on examples. Parts of it can be used separately as introduction to modern Riemannian geometry through topics like homogeneous spaces, submersions, or Riemannian functionals.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Elementare Geometrie: Allgemeines
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Geometrie Nicht-Euklidische Geometrie
- Mathematik | Informatik Mathematik Topologie Analytische Topologie
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
Weitere Infos & Material
Basic Material.- Basic Material (Continued): Kähler Manifolds.- Relativity.- Riemannian Functionals.- Ricci Curvature as a Partial Differential Equation.- Einstein Manifolds and Topology.- Homogeneous Riemannian Manifolds.- Compact Homogeneous Kähler Manifolds.- Riemannian Submersions.- Holonomy Groups.- Kähler-Einstein Metrics and the Calabi Conjecture.- The Moduli Space of Einstein Structures.- Self-Duality.- Quaternion-Kähler Manifolds.- A Report on the Non-Compact Case.- Generalizations of the Einstein Condition.