Bethuel / Helein / Brezis | Ginzburg-Landau Vortices | Buch | 978-0-8176-3723-1 | www.sack.de

Buch, Englisch, Band 13, 162 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 306 g

Reihe: Progress in Nonlinear Differential Equations and Their Applications

Bethuel / Helein / Brezis

Ginzburg-Landau Vortices


1994
ISBN: 978-0-8176-3723-1
Verlag: Birkhäuser Boston

Buch, Englisch, Band 13, 162 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 306 g

Reihe: Progress in Nonlinear Differential Equations and Their Applications

ISBN: 978-0-8176-3723-1
Verlag: Birkhäuser Boston


The original motivation of this study comes from the following questions that were mentioned to one ofus by H. Matano. Let 2 2 G= B = {x=(X1lX2) E 2; x~ + x~ = Ixl < 1}. 1 Consider the Ginzburg-Landau functional 2 2 (1) E~(u) = ~ LIVul + 4~2 L(lu1 _1)2 which is defined for maps u E H1(G;C) also identified with Hl(G;R2). Fix the boundary condition 9(X) =X on 8G and set H; = {u E H1(G;C); u = 9 on 8G}. It is easy to see that (2) is achieved by some u~ that is smooth and satisfies the Euler equation in G, -~u~ =:2 u~(1 _lu~12) (3) { on aGo u~ =9 Themaximum principleeasily implies (see e.g., F. Bethuel, H. Brezisand F. Helein (2]) that any solution u~ of (3) satisfies lu~1 ~ 1 in G. In particular, a subsequence (u~,.) converges in the w* - LOO(G) topology to a limit u*.

Bethuel / Helein / Brezis Ginzburg-Landau Vortices jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I. Energy estimates for S1-valued maps.- 1. An auxiliary linear problem.- 2. Variants of Theorem I.1.- 3. S1-valued harmonic maps with prescribed isolated singularities. The canonical harmonic map.- 4. Shrinking holes. Renormalized energy.- II. A lower bound for the energy of S1-valued maps on perforated domains.- III. Some basic estimates for u?.- 1. Estimates when G=BR and g(x)=x/ x.- 2. An upper bound for E? (u?).- 3. An upper bound for $$ \frac{1}{{{\varepsilon^2}}}{\smallint_G}{\left( {{{\left {{u_{\varepsilon }}} \right }^2} - 1} \right)^2} $$.- 4. $$ \left {{u_e}} \right \geqslant \frac{1}{2} $$ on “good discs”.- IV. Towards locating the singularities: bad discs and good discs.- 1. A covering argument.- 2. Modifying the bad discs.- V. An upper bound for the energy of u? away from the singularities.- 1. A lower bound for the energy of u? near aj.- 2. Proof of Theorem V.l.- VI. u?n converges: u? is born!.- 1. Proof of Theorem VI.1.- 2. Further properties of u?: singularities have degree one and they are not on the boundary.- VII. u? coincides with THE canonical harmonic map having singularities (aj).- VIII. The configuration (aj) minimizes the renormalized energy W.- 1. The general case.- 2. The vanishing gradient property and its various forms.- 3. Construction of critical points of the renormalized energy.- 4. The case G=B1 and $$ g\left( \theta \right) = {e^{{i\theta }}} $$.- 5. The case G=B1 and $$ g\left( \theta \right) = {e^{{i\theta }}} $$ with d?.- IX. Some additional properties of u?.- 1. The zeroes of u?.- 2. The limit of $$ \left\{ {{E_{\varepsilon }}\left( {{u_{\varepsilon }}} \right) - \pi d\left {\log \varepsilon } \right } \right\} $$ as $$ \varepsilon \to 0 $$.- 3. $$ {\smallint_G}{\left {\nabla \left {{u_{\varepsilon }}}\right } \right ^2} $$ remains bounded as $$ \varepsilon \to 0 $$.- 4. The bad discs revisited.- X. Non minimizing solutions of the Ginzburg-Landau equation.- 1. Preliminary estimates; bad discs and good discs.- 2. Splitting $$ \left {\nabla {v_{\varepsilon }}} \right $$.- 3. Study of the associated linear problems.- 4. The basic estimates: $$ {\smallint_G}{\left {\nabla {v_{\varepsilon }}} \right ^2} \leqslant C\left {\log \;\varepsilon } \right $$ and $$ {\smallint_G}{\left {\nabla {v_{\varepsilon }}} \right ^p} \leqslant {C_p} $$ for p



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.