Buch, Englisch, Band 13, 162 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 306 g
Reihe: Progress in Nonlinear Differential Equations and Their Applications
Buch, Englisch, Band 13, 162 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 306 g
Reihe: Progress in Nonlinear Differential Equations and Their Applications
ISBN: 978-0-8176-3723-1
Verlag: Birkhäuser Boston
The original motivation of this study comes from the following questions that were mentioned to one ofus by H. Matano. Let 2 2 G= B = {x=(X1lX2) E 2; x~ + x~ = Ixl < 1}. 1 Consider the Ginzburg-Landau functional 2 2 (1) E~(u) = ~ LIVul + 4~2 L(lu1 _1)2 which is defined for maps u E H1(G;C) also identified with Hl(G;R2). Fix the boundary condition 9(X) =X on 8G and set H; = {u E H1(G;C); u = 9 on 8G}. It is easy to see that (2) is achieved by some u~ that is smooth and satisfies the Euler equation in G, -~u~ =:2 u~(1 _lu~12) (3) { on aGo u~ =9 Themaximum principleeasily implies (see e.g., F. Bethuel, H. Brezisand F. Helein (2]) that any solution u~ of (3) satisfies lu~1 ~ 1 in G. In particular, a subsequence (u~,.) converges in the w* - LOO(G) topology to a limit u*.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
I. Energy estimates for S1-valued maps.- 1. An auxiliary linear problem.- 2. Variants of Theorem I.1.- 3. S1-valued harmonic maps with prescribed isolated singularities. The canonical harmonic map.- 4. Shrinking holes. Renormalized energy.- II. A lower bound for the energy of S1-valued maps on perforated domains.- III. Some basic estimates for u?.- 1. Estimates when G=BR and g(x)=x/ x.- 2. An upper bound for E? (u?).- 3. An upper bound for $$ \frac{1}{{{\varepsilon^2}}}{\smallint_G}{\left( {{{\left {{u_{\varepsilon }}} \right }^2} - 1} \right)^2} $$.- 4. $$ \left {{u_e}} \right \geqslant \frac{1}{2} $$ on “good discs”.- IV. Towards locating the singularities: bad discs and good discs.- 1. A covering argument.- 2. Modifying the bad discs.- V. An upper bound for the energy of u? away from the singularities.- 1. A lower bound for the energy of u? near aj.- 2. Proof of Theorem V.l.- VI. u?n converges: u? is born!.- 1. Proof of Theorem VI.1.- 2. Further properties of u?: singularities have degree one and they are not on the boundary.- VII. u? coincides with THE canonical harmonic map having singularities (aj).- VIII. The configuration (aj) minimizes the renormalized energy W.- 1. The general case.- 2. The vanishing gradient property and its various forms.- 3. Construction of critical points of the renormalized energy.- 4. The case G=B1 and $$ g\left( \theta \right) = {e^{{i\theta }}} $$.- 5. The case G=B1 and $$ g\left( \theta \right) = {e^{{i\theta }}} $$ with d?.- IX. Some additional properties of u?.- 1. The zeroes of u?.- 2. The limit of $$ \left\{ {{E_{\varepsilon }}\left( {{u_{\varepsilon }}} \right) - \pi d\left {\log \varepsilon } \right } \right\} $$ as $$ \varepsilon \to 0 $$.- 3. $$ {\smallint_G}{\left {\nabla \left {{u_{\varepsilon }}}\right } \right ^2} $$ remains bounded as $$ \varepsilon \to 0 $$.- 4. The bad discs revisited.- X. Non minimizing solutions of the Ginzburg-Landau equation.- 1. Preliminary estimates; bad discs and good discs.- 2. Splitting $$ \left {\nabla {v_{\varepsilon }}} \right $$.- 3. Study of the associated linear problems.- 4. The basic estimates: $$ {\smallint_G}{\left {\nabla {v_{\varepsilon }}} \right ^2} \leqslant C\left {\log \;\varepsilon } \right $$ and $$ {\smallint_G}{\left {\nabla {v_{\varepsilon }}} \right ^p} \leqslant {C_p} $$ for p