E-Book, Englisch, 432 Seiten
Bhushan / Singh / Tripathi Nanomaterials and Environmental Biotechnology
1. Auflage 2020
ISBN: 978-3-030-34544-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 432 Seiten
Reihe: Nanotechnology in the Life Sciences
ISBN: 978-3-030-34544-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Nanotechnology is considered as one of the emerging fields of science. It has applications in different biological and technological fields which deal with the science of materials at nanoscale (10-9). On the other hand, biotechnology is another field that deals with contemporary challenges. Nanobiotechnology fills the gap between these two fields. It merges physical, chemical, and biological principles in a single realm. This combination opens up new possibilities. At nanoscale dimensions, it creates precise nanocrystals and nanoshells. Integrated nanomaterials are used with modified surface layers for compatibility with living systems, improved dissolution in water, or biorecognition leading to enhanced end results in biotechnological systems. These nanoparticles can also be hybridized with additional biocompatible substances in order to amend their qualities to inculcate novel utilities. Nanobiotechnology is used in bioconjugate chemistry by coalescing up the functionality of non-organically obtained molecular components and biological molecules in order to veil the immunogenic moieties for targeted drug delivery, bioimaging and biosensing. This book blends the science of biology, medicine, bioinorganic chemistry, bioorganic chemistry, material and physical sciences, biomedical engineering, electrical, mechanical, and chemical science to present a comprehensive range of advancements. The development of nano-based materials has made for a greater understanding of their characterization, using techniques such as transmission electron microscope, FTIR, X-ray diffraction, scanning electron microscope EDX, and so on. This volume also highlights uses in environmental remediation, environmental biosensors and environmental protection. It also emphasizes the significance of nanobiotechnology to a series of medical applications viz., diagnostics, and therapeutics stem cell technology, tissue engineering enzyme engineering, drug development and delivery. In addition this book also offers a distinctive understanding of nanobiotechnology from researchers and educators and gives a comprehensive facility for future developments and current applications of nanobiotechnology.
Dr. Indu Bhushan Sharma, working as Assistant Professor in the School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India. He has more than 10 years of teaching experience at University level. His area of research is focused toward Isolation and Purification of Industrial important Microbial Enzymes, Fermentation, Biotransformation and Nanotechnology. He has published more than 20 papers in reputed SCI & high Impact Factor Journals. He is Associate Editor of the Journal 3 Biotech and Annals of Biotechnology and also reviewer of many reputed Journals. He is life member of the Biotech Research Society of India, Society of Biologists, Annual member of Indian Science Congress and Danish Microbiological Society. He did his Ph.D in Biochemistry from IIIM-CSIR, Jammu and Kurukshetra University, Haryana (India). Dr. Sharma is also recipients of prestigious 'Raman Fellowship' awarded by University Grants Commission (UGC), Govt. of India for the year 2015-16 for Post-Doctoral Research in Virginia Commonwealth University, Richmond, Virginia, USA.
Dr. Vivek Kumar Singh, joined Shri Mata Vaishno Devi University in 2008 as Assistant Professor of Physics under Faculty of Sciences. Dr. Singh completed his D. Phil. in 2010 from University of Allahabad under the esteemed supervision of Prof. A.K. Rai, Professor, Department of Physics, University of Allahabad, Allahabad. In last decade, Dr. Singh worked extensively on applications of Laser-Induced Breakdown Spectroscopy (LIBS) for the study of several biological specimens (gallstones, kidney stones, teeth, bones etc). His research interests are in the area of Laser and Spectroscopy. His current research interests include multi-spectroscopy studies of biological samples, organic samples, medicinal plant samples, agricultural samples and food products etc. Trace and heavy metal determination in bio samples, food products (for quality check), and medicinal plant samples are the major thrust areas of Dr. Singh. He is also working in field of Nano-science and Nano-technology for its application to plants and in other areas too. He has published more than 60 International research papers and reviews articles in renowned International Journals with good impact factor. He is also life member of several academic and professional societies. Dr. Singh is also recipients of 'UGC- Raman Fellowship for the year 2015-16 for Post-Doctoral Research in Lawrence Berkeley National Laboratory (LBNL) operated by University of California, Berkley, USA.
Dr. Durgesh Kumar Tripathi, is working as Assistant Professor, in the Amity Institute of Organic Agriculture, Amity University Uttar Pradesh. He did M. Sc and Ph. D in Botany. He has published many research papers in reputed journals with high impact factor and in editorial board member teams of many International journals. He is also life member of several academic and professional societies.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Chapter 1: Nanoparticles and Plant Interaction with Respect to Stress Response;11
3.1;1.1 Introduction;11
3.2;1.2 The Nanoparticle and Its Role in Plant Stress;13
3.3;1.3 Mechanistic Interaction of Nanoparticles in Plant Stress;14
3.3.1;1.3.1 Phytotoxicity Mechanism of Nanoparticles;15
3.3.2;1.3.2 Uptake Mechanism of Nanoparticles;17
3.3.3;1.3.3 Translocation Mechanism of Nanoparticles;17
3.3.4;1.3.4 Interaction Mechanism of Nanoparticles Leading to Stress;18
3.4;1.4 Conclusions and Future Prospects;19
3.5;References;20
4;Chapter 2: Nanoencapsulation Technology: Boon to Food Packaging Industries;26
4.1;2.1 Introduction;26
4.2;2.2 Nanomaterials Used for Food Packaging;27
4.2.1;2.2.1 Lipid-Based Encapsulation of Essential Oils;27
4.2.1.1;2.2.1.1 Emulsions;28
4.2.1.2;2.2.1.2 Solid Lipid Nanoparticle (SLNs);29
4.2.1.3;2.2.1.3 Liposome as Nanocarriers of Bioactive Molecules;29
4.2.1.4;2.2.1.4 Micelles;29
4.2.2;2.2.2 Polymer-Based Encapsulation of Essential Oils;30
4.3;2.3 Active Packaging of EO Nanoparticles as Food Protectant;31
4.4;2.4 Mode of Action of Nanoparticles;34
4.5;2.5 Factors Controlling the Stability of Nanoparticles in Food System;35
4.5.1;2.5.1 Free Energy of Different Phases;36
4.5.2;2.5.2 Droplet Aggregation and Particle Size;36
4.5.3;2.5.3 Emulsifier Type;36
4.5.4;2.5.4 Ionic Strength and pH;37
4.5.5;2.5.5 Thermal Processing;37
4.6;2.6 Nanoparticles as Active Biosensor for Detection of Food Contaminants (Chemicals and Food-Borne Pathogens);37
4.7;2.7 Application of Nanoparticles in Different Food Sectors;38
4.8;2.8 Safety Issues Associated with Application of Nanotechnology in Food Packaging/Food Preservation;39
4.9;2.9 Future Prospective;42
4.10;References;42
5;Chapter 3: Ecotoxicity of Metallic Nanoparticles and Possible Strategies for Risk Assessment;50
5.1;3.1 Introduction;50
5.2;3.2 Synthesis of Metallic Nanoparticles;51
5.3;3.3 Application of Nanoparticles;51
5.4;3.4 Toxicity of Metallic Nanoparticles;53
5.4.1;3.4.1 Uptake of Metallic Nanoparticles;55
5.4.2;3.4.2 Mode of Action of Nanoparticles;55
5.5;3.5 Ecotoxicology Assessment and Possible Strategies;56
5.6;3.6 Conclusions;56
5.7;References;57
6;Chapter 4: Tripartite Interaction Among Nanoparticles, Symbiotic Microbes, and Plants: Current Scenario and Future Perspectives;63
6.1;4.1 Introduction;63
6.2;4.2 Nanoparticles Versus Plant Growth;64
6.3;4.3 Nanoparticles Versus Soil Microorganisms;65
6.4;4.4 Nanoparticles Versus Symbioses;66
6.4.1;4.4.1 ZnO Nanoparticle Versus Symbioses;66
6.4.2;4.4.2 Ag Nanoparticle Versus Symbioses;67
6.4.3;4.4.3 CeO2 Nanoparticle Versus Symbioses;67
6.4.4;4.4.4 Fe3O4 Nanoparticle Versus Symbioses;68
6.5;4.5 Conclusions;68
6.6;4.6 Future Perspectives;69
6.7;References;70
7;Chapter 5: Effect of Nanoparticles on Plant Growth and Physiology and on Soil Microbes;73
7.1;5.1 Introduction;73
7.2;5.2 Effect of Nanoparticles on Plants;75
7.2.1;5.2.1 Effects of NPs on Photosynthesis;78
7.3;5.3 Effect of Nanoparticles on the Soil Microbial Community;78
7.4;5.4 Impact of Carbon Nanotubes on Plants;80
7.4.1;5.4.1 Effect of CNTs on Photosynthesis Mechanism;83
7.5;5.5 Effect of CNTs on Soil Microbial Community;84
7.6;5.6 Future Possibilities;85
7.7;References;85
8;Chapter 6: Recent Trends and Advancement Toward Phyto-mediated Fabrication of Noble Metallic Nanomaterials: Focus on Silver, Gold, Platinum, and Palladium;94
8.1;6.1 Introduction;94
8.2;6.2 An Overview on Phyto-mediated Fabrication of Metallic NMs/Noble Metallic NMs;98
8.3;6.3 Recent Fabrication Trends of Silver, Gold, Platinum, and Palladium NMs Using Plant System;100
8.4;6.4 General Mechanism of Silver, Gold, Platinum, and Palladium NM Fabrication in Plant System;103
8.5;6.5 Key Factors/Parameters for Optimal Fabrication of Silver, Gold, Platinum, and Palladium;103
8.6;6.6 Characterization of Metallic NMs (Silver, Gold, Platinum, and Palladium);104
8.7;6.7 Conclusions and Future Perspective;105
8.8;References;106
9;Chapter 7: Development of Environmental Biosensors for Detection, Monitoring, and Assessment;113
9.1;7.1 Introduction;113
9.2;7.2 Biosensing Techniques;116
9.2.1;7.2.1 Biosensor System;116
9.2.2;7.2.2 Classification of Biosensors;116
9.2.2.1;7.2.2.1 On the Basis of Bio-recognition Element;117
9.2.2.1.1;Immunosensors;117
9.2.2.1.2;Enzymatic Biosensors;118
9.2.2.1.3;Whole-Cell Based Biosensors;118
9.2.2.1.4;Genosensors;118
9.2.2.1.5;Aptasensors;119
9.2.2.1.6;Biomimetic Biosensors;119
9.2.2.2;7.2.2.2 On the Basis of the Transduction Principle;119
9.2.2.2.1;Electrochemical Biosensors;120
9.2.2.2.2;Optical Biosensors;120
9.2.2.2.3;Piezoelectric Biosensors;121
9.2.2.2.4;Thermometric Biosensors;121
9.2.2.2.5;Magnetic Biosensors;121
9.3;7.3 Environmental Biosensors;121
9.3.1;7.3.1 Pesticides;122
9.3.2;7.3.2 Pathogens;122
9.3.3;7.3.3 Potentially Toxic Elements or Heavy Metals;126
9.3.4;7.3.4 Toxins;126
9.3.5;7.3.5 Endocrine-Disrupting Chemicals (EDCs);126
9.3.6;7.3.6 Other Environmental Compounds;127
9.4;7.4 Summary;127
9.5;References;127
10;Chapter 8: Nano-Based Materials and Their Synthesis;132
10.1;8.1 Introduction;132
10.2;8.2 Green Synthesis of MNPs (Biological/Bioreduction);133
10.3;8.3 Green Synthesis of Metallic Nanoparticles Using Plant Extracts;135
10.4;8.4 Nanoparticle Synthesis Using Microorganisms;135
10.5;8.5 Conclusion;141
10.6;References;141
11;Chapter 9: Nano-based Composites and Their Synthesis;146
11.1;9.1 Introduction;146
11.2;9.2 Synthesis of Nanocomposites;148
11.2.1;9.2.1 Ceramic Matrix Nanocomposites (CMNC);148
11.2.1.1;9.2.1.1 Synthesis of Ceramic CNT Nanocomposites;148
11.2.2;9.2.2 Metal Matrix Nanocomposites;149
11.2.2.1;9.2.2.1 Synthesis of CNT-Reinforced Metal Matrix Composites;155
11.2.3;9.2.3 Polymer Nanocomposites;156
11.2.3.1;9.2.3.1 In Situ Polymerization;157
11.2.3.2;9.2.3.2 Melt Processing;157
11.2.3.3;9.2.3.3 Solution Blending;158
11.2.3.4;9.2.3.4 Other Techniques;158
11.2.3.5;9.2.3.5 Synthesis of Polymer-CNT Nanocomposites;160
11.3;9.3 Conclusion;160
11.4;References;163
12;Chapter 10: Appraisal of Chitosan-Based Nanomaterials in Enzyme Immobilization and Probiotics Encapsulation;167
12.1;10.1 Chitosan;167
12.2;10.2 Why Chitosan Is Useful in Enzyme Immobilization;168
12.3;10.3 Nanoparticles;168
12.3.1;10.3.1 Methods of Preparation of Nanoparticles;169
12.3.2;10.3.2 Methods of Preparation of Chitosan Nanoparticles for Enzyme Immobilization;169
12.3.2.1;10.3.2.1 Reverse Micelle Method;169
12.3.2.2;10.3.2.2 Ionic Cross-Linking Method;170
12.3.2.3;10.3.2.3 Coprecipitation Method;170
12.3.2.4;10.3.2.4 Emulsion Cross-Linking Method;170
12.3.2.5;10.3.2.5 Ionotropic Gelation Method;170
12.4;10.4 Enzyme Immobilization;170
12.4.1;10.4.1 Methods of Preparation of Immobilized Enzymes;171
12.4.1.1;10.4.1.1 Support Binding;171
12.4.1.2;10.4.1.2 Cross-Linking;171
12.4.1.3;10.4.1.3 Entrapment;172
12.4.2;10.4.2 Supports to the Enzymes;172
12.4.2.1;10.4.2.1 Classic Materials;172
12.4.2.1.1;Inorganic Materials;172
12.4.2.1.2;Mineral Materials;173
12.4.2.1.3;Carbon-Based Materials;173
12.4.2.1.4;Organic Materials;173
12.4.2.2;10.4.2.2 New Materials;173
12.4.2.2.1;Synthetic Materials;173
12.4.2.2.2;Biopolymers;174
12.4.3;10.4.3 Immobilization of Enzyme Through Chitosan Nanoparticles;174
12.4.3.1;10.4.3.1 ?-Galactosidase;174
12.4.3.2;10.4.3.2 Cellulase;175
12.4.3.3;10.4.3.3 Glucose Oxidase;175
12.4.3.4;10.4.3.4 Invertase;176
12.4.3.5;10.4.3.5 Glucoamylase;176
12.4.3.6;10.4.3.6 Glucosidase;176
12.4.3.7;10.4.3.7 Xylanase;176
12.4.3.8;10.4.3.8 ?-Amylase;177
12.4.3.9;10.4.3.9 Pectinase;177
12.4.3.10;10.4.3.10 Laccase;177
12.4.3.11;10.4.3.11 Lipase;178
12.4.3.12;10.4.3.12 Protease;179
12.4.3.13;10.4.3.13 Alcohol Dehydrogenase;180
12.4.3.14;10.4.3.14 Penicillin G Acylase;180
12.4.3.15;10.4.3.15 Serratiopeptidase;180
12.5;10.5 Probiotics;183
12.5.1;10.5.1 Probiotic Encapsulation;183
12.5.2;10.5.2 Methods of Encapsulation;184
12.5.3;10.5.3 Techniques of Coated Capsules;184
12.5.4;10.5.4 Probiotics Encapsulation in Chitosan-Based Nanomaterials;184
12.6;10.6 Conclusion;186
12.7;References;186
13;Chapter 11: Nano-Based Drug Delivery Tools for Personalized Nanomedicine;193
13.1;11.1 Introduction;193
13.2;11.2 Applications of Nanotechnology in Biological Sciences;194
13.2.1;11.2.1 Drug Delivery in Cancer;194
13.2.1.1;11.2.1.1 Gelatin Nanoparticle;194
13.2.1.2;11.2.1.2 PEGylated Liposomes;194
13.2.1.3;11.2.1.3 Nanovaccines;195
13.2.2;11.2.2 Phytochemical-Based Nanodrugs;195
13.2.2.1;11.2.2.1 Nanocurcumin;195
13.2.2.2;11.2.2.2 Nano-ginseng;196
13.2.2.3;11.2.2.3 Nano-quercetin;196
13.2.2.4;11.2.2.4 pH-Dependent Nanotools;196
13.3;11.3 Disease Diagnostics;197
13.3.1;11.3.1 Magnetic and Electrochemical-Based Nanoparticles;197
13.3.2;11.3.2 Gold Nanoparticles;197
13.3.3;11.3.3 Nitric Oxide-Embedded Nanoparticles;198
13.3.4;11.3.4 Sunscreen;198
13.3.5;11.3.5 Personalized Nanomedicine;199
13.3.6;11.3.6 Personalized Nanodevices;200
13.3.7;11.3.7 Microfluidic Channels on Bar Charts of Glass Chip;200
13.3.8;11.3.8 Proteinticles;200
13.3.9;11.3.9 Aptamers;201
13.4;11.4 Conclusion;201
13.5;References;202
14;Chapter 12: Nanotechnology as Potential and Innovative Platform Toward Wastewater Treatment: An Overview;204
14.1;12.1 Introduction;204
14.2;12.2 Fabrication of Nanoparticles: Physical, Chemical, and Biogenic Approaches;206
14.3;12.3 Characterization Techniques of Fabricated Nanoparticles;208
14.4;12.4 Nanoparticles: Potential Platform for the Removal of Water Contaminants;211
14.5;12.5 Limitations of Nanoparticle-Based Wastewater Treatment;216
14.6;12.6 Conclusion;217
14.7;References;217
15;Chapter 13: Solid Lipid Nanoparticles;224
15.1;13.1 Introduction;224
15.2;13.2 Composition of Solid Lipid Nanoparticles;226
15.2.1;13.2.1 Lipids;226
15.2.2;13.2.2 Surface-Active Compounds (SACs);227
15.3;13.3 Techniques Used for Preparation;227
15.3.1;13.3.1 High-Pressure Homogenization;227
15.3.1.1;13.3.1.1 Hot Homogenization;229
15.3.1.2;13.3.1.2 Cold Homogenization;230
15.3.2;13.3.2 Ultrasound Dispersion/Ultrasonication;231
15.3.3;13.3.3 Solvent Emulsification/Evaporation;231
15.3.4;13.3.4 Microemulsion-Based Technique;232
15.3.5;13.3.5 Double Emulsion Method;233
15.3.6;13.3.6 Membrane Contactor Technique;234
15.3.7;13.3.7 Supercritical Fluid (SCF) Technology;235
15.4;13.4 Characterization of Solid Lipid Nanoparticles;236
15.4.1;13.4.1 Physical Properties;236
15.4.1.1;13.4.1.1 Size and Its Distribution;236
15.4.1.1.1;Photon Correlation Spectroscopy;237
15.4.1.1.2;Laser Diffraction (LD) Spectroscopy;238
15.4.2;13.4.2 Microscopic Methods;238
15.4.2.1;13.4.2.1 Shape and Surface Morphology;238
15.4.2.1.1;Electron Microscopy;239
15.4.2.1.2;Atomic Force Microscopy;239
15.4.3;13.4.3 Surface Charge;240
15.4.4;13.4.4 Drug Encapsulation and Loading Capacity;241
15.4.4.1;13.4.4.1 Determination of Incorporated Drug;241
15.4.5;13.4.5 Drug Localization and Drug Release;241
15.5;13.5 Applications of Solid Lipid Nanoparticles;243
15.5.1;13.5.1 Parenteral Delivery;243
15.5.2;13.5.2 Oral Delivery;243
15.5.3;13.5.3 Transdermal and Topical Use;244
15.5.4;13.5.4 Pulmonary, Nasal and Ocular Administration;244
15.6;13.6 SLNs as a Carrier for Site-Specific Delivery;245
15.6.1;13.6.1 Application in Gene Delivery;245
15.6.2;13.6.2 SLN as Carriers for Peptides and Protein Drugs;246
15.6.3;13.6.3 Lipid Nanoparticle as a Carrier for Vaccine;246
15.7;13.7 Stability;247
15.8;13.8 Conclusions;247
15.9;References;248
16;Chapter 14: Nanotechnology Applications and Synthesis of Graphene as Nanomaterial for Nanoelectronics;253
16.1;14.1 Introduction;253
16.1.1;14.1.1 Types of Nanomaterials;256
16.1.2;14.1.2 Applications of Nanotechnology;258
16.1.3;14.1.3 Advantages of Nanotechnology;258
16.2;14.2 Graphene as Nanotechnology Material;259
16.3;14.3 Graphene and Its Future Aspects;262
16.3.1;14.3.1 Properties of Graphene;263
16.3.2;14.3.2 Different Types of Nanostructures and Methods of Graphene Preparation;264
16.3.3;14.3.3 Characterization of Graphene Material;266
16.3.4;14.3.4 Potential Applications of Graphene (Hua-Qiang et al. 2013; Awano 2009; Lam and Liang 2011);268
16.4;14.4 CNT and Its Growing Demand;268
16.5;14.5 Conclusion;269
16.6;References;270
17;Chapter 15: Efficiency Enhancement of Renewable Energy Systems Using Nanotechnology;272
17.1;15.1 Introduction;272
17.2;15.2 Origin of Nanotechnology: The Science of Small Where Small Is Effective;275
17.3;15.3 Rise of Nanomaterials and Its Applications in Diverse Areas;275
17.4;15.4 Nanotechnology: The Future of Renewable Energy;280
17.4.1;15.4.1 Benefits and Applications of Nanotechnology in the Renewable Energy Sector;280
17.4.2;15.4.2 Solar Energy;280
17.4.3;15.4.3 Solar Photovoltaic Cells;281
17.5;15.5 Nanofluids for Solar Energy Applications;283
17.5.1;15.5.1 Solar Cells;284
17.5.2;15.5.2 Dye-Sensitized Solar Cells (DSSC/DSC/DYSC/Grätzel Cell);285
17.5.3;15.5.3 Dye-Sensitized Nanocrystalline Solar Cells;286
17.5.4;15.5.4 Organic Polymer-Derived PV Solar Cell (OPV);287
17.5.5;15.5.5 Hot Carrier Solar Cells;287
17.6;15.6 Hydrogen Energy;288
17.6.1;15.6.1 Fuel Cells;288
17.6.2;15.6.2 Diesel Engine;290
17.6.3;15.6.3 Biomass/Bioenergy;290
17.6.4;15.6.4 Bio-oil;290
17.6.5;15.6.5 Bio-diesel;291
17.6.6;15.6.6 Wind Energy;291
17.6.7;15.6.7 Geothermal Energy;292
17.6.8;15.6.8 Tidal Energy;292
17.7;15.7 Conclusions;293
17.8;References;294
18;Chapter 16: Wastewater and Industrial Effluent Treatment by Using Nanotechnology;299
18.1;16.1 Introduction;299
18.2;16.2 Existing Pollutants and Their Traditional Treatment Technologies;301
18.3;16.3 Advanced Technologies for Wastewater Treatment;302
18.3.1;16.3.1 Membrane Filtration;303
18.3.2;16.3.2 Nanotechnology;303
18.3.3;16.3.3 Automatic Variable Filtration (AVF) Technology;303
18.3.4;16.3.4 Advanced Photo-Oxidation Process (APOP);303
18.3.5;16.3.5 Microbial Fuel Cells;304
18.3.6;16.3.6 New Urban Sanitation Technology;304
18.3.7;16.3.7 Natural Treatment Systems (NTSs);304
18.3.8;16.3.8 Coke Oven (CO) By-Product Wastewater Treatment;304
18.3.9;16.3.9 Urine Separating Process;304
18.4;16.4 Nanotechnology;305
18.4.1;16.4.1 What Is Nanotechnology?;306
18.4.2;16.4.2 Nanotechnology in Wastewater Treatment;306
18.4.2.1;16.4.2.1 Adsorption;307
18.4.2.2;16.4.2.2 Nanofiltration;307
18.4.2.3;16.4.2.3 Nanofiber;308
18.4.2.4;16.4.2.4 Photocatalysis;308
18.4.2.5;16.4.2.5 Nanocatalysts;308
18.4.2.6;16.4.2.6 Sensing and Monitoring;309
18.5;16.5 Pros and Cons of Nanotechnology;309
18.6;16.6 Future Aspects;311
18.7;References;312
19;Chapter 17: Biomolecular and Cellular Manipulation and Detection (Nanofluidics and Micro- and Nanotechnologies in Integrative Biology);314
19.1;17.1 General Introduction;314
19.2;17.2 Buckyballs and Nanotubes;315
19.2.1;17.2.1 Application of Nanotubes in Integrative Biology;316
19.2.1.1;17.2.1.1 Sending Signals to Nerve Cells via Nanotubes/Neuron-Nanotube Electric Interface;316
19.2.1.2;17.2.1.2 Cell Membrane Interaction with Nanotube Transistor;318
19.2.1.3;17.2.1.3 Artificial Retina;321
19.3;17.3 Nanobots;322
19.4;17.4 Nanoactuators;323
19.5;17.5 Nanobombs;324
19.6;17.6 Nanowires;325
19.7;17.7 Lab-on-Chip;327
19.8;17.8 Organs-on-Chip;327
19.9;17.9 Conclusion;329
19.10;References;329
20;Chapter 18: Bio-Based Nano-Lubricants for Sustainable Manufacturing;332
20.1;18.1 Introduction;332
20.1.1;18.1.1 Types of Cutting Fluids;334
20.1.1.1;18.1.1.1 Neat Cutting Oils;334
20.1.1.2;18.1.1.2 Water-Soluble Fluids;335
20.1.1.3;18.1.1.3 Emulsifiable Oils;335
20.1.1.4;18.1.1.4 Chemical (Synthetic Fluids);335
20.1.1.5;18.1.1.5 Semisynthetic Fluids;335
20.1.2;18.1.2 Methods of Application of Cutting Fluids in Conventional Machining;335
20.1.2.1;18.1.2.1 Cryogenic Cooling;336
20.1.2.2;18.1.2.2 Solid Lubricant/Coolant;336
20.1.2.3;18.1.2.3 High-Pressure Cooling Technique;337
20.1.2.4;18.1.2.4 Air/Vapour/Gas Cooling;337
20.1.2.5;18.1.2.5 Minimum Quantity Lubrication;338
20.1.2.6;18.1.2.6 Nano-Enriched Cutting Fluids;338
20.1.3;18.1.3 MQL (Minimum Quantity Lubrication) Application Technique;338
20.1.3.1;18.1.3.1 Internal Application;339
20.1.3.2;18.1.3.2 External Application;339
20.2;18.2 Vegetable Oil-Based Lubricants;340
20.2.1;18.2.1 Physicochemical Properties of Vegetable Oil-Based Lubricants;340
20.2.1.1;18.2.1.1 Viscosity;340
20.2.1.2;18.2.1.2 Viscosity Index;340
20.2.1.3;18.2.1.3 Flash Point;341
20.2.1.4;18.2.1.4 Pour Point;341
20.2.1.5;18.2.1.5 Oxidation Stability;341
20.3;18.3 Role of Nanoparticles in Cutting Fluids;342
20.3.1;18.3.1 Mechanism of Nanolubrication;343
20.3.1.1;18.3.1.1 Ball Bearing/Rolling/Sliding Effect;343
20.3.1.2;18.3.1.2 Polishing Mechanism;343
20.3.1.3;18.3.1.3 Mending Mechanism;343
20.3.1.4;18.3.1.4 Formation of Tribofilm;343
20.3.2;18.3.2 Preparation of Nanofluids;344
20.3.2.1;18.3.2.1 Two-Step Method;344
20.3.2.2;18.3.2.2 One-Step Method;344
20.3.3;18.3.3 Importance of Nanofluid Stability;345
20.4;18.4 Nanoparticle-Enriched Cutting Using MQL;345
20.4.1;18.4.1 MQL-Assisted Drilling with Nanoparticles;345
20.4.2;18.4.2 MQL-Assisted Grinding with Nanoparticles;347
20.4.3;18.4.3 MQL-Assisted Turning with Nanoparticles;353
20.4.4;18.4.4 MQL-Assisted Milling with Nanoparticles;362
20.5;18.5 Future Scope;367
20.6;References;370
21;Chapter 19: Nanomaterials Used for Delivery of Bioactives;380
21.1;19.1 Introduction;380
21.2;19.2 Classification of Nanocarriers;387
21.2.1;19.2.1 Liposomes;387
21.3;19.3 Particulate Carriers;389
21.3.1;19.3.1 Polymeric Nanoparticles;389
21.3.2;19.3.2 Solid Lipid Nanoparticles (SLNs);393
21.4;19.4 Inorganic Nanocarriers;395
21.4.1;19.4.1 Silica Nanoparticles;395
21.4.2;19.4.2 Gold Nanoparticles;398
21.4.3;19.4.3 Calcium Phosphate Nanoparticles;398
21.5;19.5 Concluding Remarks;399
21.6;References;400
22;Chapter 20: Efficacy of Nano-phytochemicals Over Pure Phytochemicals Against Various Cancers: Current Trends and Future Prospects;405
22.1;20.1 Phytochemicals and Nano-phytochemicals as Potent Anticancer Agents;405
22.2;20.2 The Advantage of Nano-phytochemicals Over Pure Phytochemicals;410
22.2.1;20.2.1 Role of Nanoform Phytochemicals in Cancer Research;410
22.2.1.1;20.2.1.1 Broccoli Gold Nanoparticles;412
22.2.1.2;20.2.1.2 Gold Quercetin Nanoparticles;412
22.2.1.3;20.2.1.3 Curcumin Nanoparticles;412
22.2.1.4;20.2.1.4 Selaginella doederleinii Leaf Nanoparticles;414
22.2.1.5;20.2.1.5 Nigella sativa Nanoformulation;415
22.2.1.6;20.2.1.6 Honokiol Nanoparticle;415
22.2.1.7;20.2.1.7 Silibinin-Loaded Nanoparticle;416
22.2.1.8;20.2.1.8 Ursolic Acid Nanoparticle;416
22.2.1.9;20.2.1.9 ?-Lapachone Nanoparticle;417
22.2.1.10;20.2.1.10 Ferulic Acid Nanoparticles;417
22.3;20.3 Conclusion;417
22.4;References;418
23;Index;423




