Bickel | Genomics Data Analysis | Buch | 978-1-032-47528-8 | www.sack.de

Buch, Englisch, 140 Seiten, Format (B × H): 138 mm x 216 mm, Gewicht: 180 g

Bickel

Genomics Data Analysis

False Discovery Rates and Empirical Bayes Methods
1. Auflage 2023
ISBN: 978-1-032-47528-8
Verlag: Taylor & Francis

False Discovery Rates and Empirical Bayes Methods

Buch, Englisch, 140 Seiten, Format (B × H): 138 mm x 216 mm, Gewicht: 180 g

ISBN: 978-1-032-47528-8
Verlag: Taylor & Francis


Statisticians have met the need to test hundreds or thousands of genomics hypotheses simultaneously with novel empirical Bayes methods that combine advantages of traditional Bayesian and frequentist statistics. Techniques for estimating the local false discovery rate assign probabilities of differential gene expression, genetic association, etc. without requiring subjective prior distributions. This book brings these methods to scientists while keeping the mathematics at an elementary level. Readers will learn the fundamental concepts behind local false discovery rates, preparing them to analyze their own genomics data and to critically evaluate published genomics research.

Key Features:

* dice games and exercises, including one using interactive software, for teaching the concepts in the classroom

* examples focusing on gene expression and on genetic association data and briefly covering metabolomics data and proteomics data

* gradual introduction to the mathematical equations needed

* how to choose between different methods of multiple hypothesis testing

* how to convert the output of genomics hypothesis testing software to estimates of local false discovery rates

* guidance through the minefield of current criticisms of p values

* material on non-Bayesian prior p values and posterior p values not previously published

Bickel Genomics Data Analysis jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1.Basic probability and statistics, 2. Introduction to likelihood, 3. False discovery rates, 4. Simulating and analyzing gene expression data, 5. Variations in dimension and data, 6. Correcting bias in estimates of the false discovery rate, 7. The L value: An estimated local false discovery rate to replace a p value, 8. Maximum likelihood and applications, Appendix A. Generalized Bonferroni correction derived from conditional compatibility, Appendix B. How to choose a method of hypothesis testing.


David R. Bickel is an Associate Professor in the Department of Biochemistry, Microbiology and Immunology of the University of Ottawa and a Core Member of the Ottawa Institute of Systems Biology. Since 2011, he has been teaching classes focused on the statistical analysis of genomics data. While working as a biostatistician in academia and industry, he has published new statistical methods for analyzing genomics data in leading statistics and bioinformatics journals. He is also investigating the foundations of statistical inference. For recent activity, see davidbickel.com or follow him at @DavidRBickel (Twitter).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.