Blatt / Andrievskii | Discrepancy of Signed Measures and Polynomial Approximation | Buch | 978-1-4419-3146-7 | sack.de

Buch, Englisch, 438 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1400 g

Reihe: Springer Monographs in Mathematics

Blatt / Andrievskii

Discrepancy of Signed Measures and Polynomial Approximation


1. Auflage. Softcover version of original hardcover Auflage 2002
ISBN: 978-1-4419-3146-7
Verlag: Springer

Buch, Englisch, 438 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1400 g

Reihe: Springer Monographs in Mathematics

ISBN: 978-1-4419-3146-7
Verlag: Springer


In many situations in approximation theory the distribution of points in a given set is of interest. For example, the suitable choiee of interpolation points is essential to obtain satisfactory estimates for the convergence of interpolating polynomials. Zeros of orthogonal polynomials are the nodes for Gauss quadrat ure formulas. Alternation points of the error curve char­ acterize the best approximating polynomials. In classieal complex analysis an interesting feature is the location of zeros of approximants to an analytie function. In 1918 R. Jentzsch [91] showed that every point of the circle of convergence of apower series is a limit point of zeros of its partial sums. This theorem of Jentzsch was sharpened by Szegö [170] in 1923. He proved that for apower series with finite radius of convergence there is an infinite sequence of partial sums, the zeros of whieh are "equidistributed" with respect to the angular measure. In 1929 Bernstein [27] stated the following theorem. Let f be a positive continuous function on [-1, 1]; if almost all zeros of the polynomials of best 2 approximation to f (in a weighted L -norm) are outside of an open ellipse c with foci at -1 and 1, then f has a continuous extension that is analytic in c.

Blatt / Andrievskii Discrepancy of Signed Measures and Polynomial Approximation jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Auxiliary Facts.- 2 Zero Distribution of Polynomials.- 3 Discrepancy Theorems via Two—Sided Bounds for Potentials.- 4 Discrepancy Theorems via One-Sided Bounds for Potentials.- 5 Discrepancy Theorems via Energy Integrals.- 6 Applications of Jentzsch—Szegö and Erdös—Turán Type Theorems.- 7 Applications of Discrepancy Theorems.- 8 Special Topics.- A Conformally Invariant Characteristics of Curve Families.- A.1 Module and Extremal Length of a Curve Family.- A.2 Reduced Module.- B Basics in the Theory of Quasiconformal Mappings.- B.1 Quasiconformal Mappings.- B.2 Quasiconformal Curves and Arcs.- C Constructive Theory of Functions of a Complex Variable.- C.1 Jackson Type Kernels.- C.2 Polynomial Kernels Approximating the Cauchy Kernel.- C.3 Inverse Theorems.- C.4 Polynomial Approximation in Domains with Smooth Boundary.- D Miscellaneous Topics.- D.1 The Regularized Distance.- D.2 Green’s Function for a System of Intervals.- Notation.


Vladimir V. Andrievskii is Assistant Professor of Mathematics at Kent State University. Hans-Peter Blatt is Full Professor of Mathematics at Katholische Universität Eichstätt.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.