E-Book, Englisch, 496 Seiten
Bleam Soil and Environmental Chemistry
1. Auflage 2011
ISBN: 978-0-12-415862-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 496 Seiten
ISBN: 978-0-12-415862-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
William Bleam is Professor of Soil Science at the University of Wisconsin, USA. His research interests include physical chemistry of soil colloids and sorption processes, chemistry of humic substances, factors controlling biological availability of contaminants to micro-organisms, magnetic resonance and synchrotron studies of adsorption and precipitation. He has taught an intermediate soil chemistry course (Soil Science 321, Soil & Environmental Chemistry) since 2006. Students taking this course include undergraduate and graduate students.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;2
2;Soil and Environmental Chemistry;4
3;Copyright;5
4;Dedication;6
5;Contents;8
6;Preface;16
7;Chapter 1: Elements: Their Origin and Abundance;18
7.1;Dose-Response Distributions;429
7.2;Introduction;18
7.3;A Brief History of the Solar System and Planet Earth;19
7.4;The Composition of Earth's Crust and Soils;20
7.5;The Abundance of Elements in the Solar System, Earth's Crust, and Soils;20
7.6;Elements and Isotopes;21
7.7;Nuclear Binding Energy;23
7.8;Enrichment and Depletion during Planetary Formation;25
7.9;Planetary Accretion;26
7.10;The Rock Cycle;29
7.11;Soil Formation;30
7.12;Concentration Frequency Distributions of the Elements;33
7.13;Estimating the Most Probable Concentration and Concentration Range Using the LOGARITHMIC TRANSFORMATION;35
7.14;Summary;38
7.15;Factors Governing Nuclear Stability and Isotope Abundance;39
7.15.1;The Table of Isotopes and Nuclear Magic Numbers;39
7.15.2;Nuclear Magic Numbers;39
7.16;Nucleosynthesis;42
7.16.1;Nuclear Reactions;42
7.16.2;Nuclear Fusion;43
7.16.3;Neutron Capture;45
7.16.4;Cosmic Ray Spallation;47
7.16.5;Transuranium Elements;47
7.17;Thermonuclear FUSION Cycles;49
7.17.1;The CNO Cycle;49
7.17.2;The Triple-Alpha Process;50
7.17.3;Carbon Burning;51
7.18;Neutron-Emitting Reactions that Sustain the S-Process;51
7.19;Random Sequential Dilutions and the Law of Proportionate Effect;52
7.20;The Estimate of Central Tendency and Variation of a Log-Normal Distribution;54
8;Chapter 2: Soil Moisture and Hydrology;58
8.1;Introduction;58
8.2;Water Resources and the Hydrologic Cycle;59
8.3;Water Budgets;60
8.4;Residence Time and Runoff Ratios;60
8.5;Groundwater Hydrology;62
8.5.1;Water in the Porosphere;62
8.5.2;Hydrologic Units;64
8.5.3;Darcy's Law;65
8.5.4;Hydrostatic Heads and Hydrostatic Gradients;66
8.5.5;Intrinsic Permeability;71
8.5.6;Groundwater Flow Nets;73
8.6;Vadose Zone Hydrology;75
8.6.1;Capillary Forces;75
8.6.2;Soil Moisture Zones;77
8.6.3;The Water Characteristic Curve and Vadose Zone Hydraulic Conductivity;79
8.7;Elementary Solute Transport Models;79
8.7.1;The Retardation Coefficient Model;79
8.7.2;Plate Theory: Multiple Sequential Partitioning;82
8.8;Summary;88
8.9;Soil Moisture Recharge and Loss;88
8.10;The Water-Holding Capacity of a Soil Profile;89
8.11;Predicting Capillary Rise;92
8.12;Symbols and Units in the Derivation of the Retardation Coefficient Model of Solute Transport;93
8.13;Symbols and Units in the Derivation of the Plate Theory Model of Solute Transport;94
8.14;Empirical Water Characteristic Function and Unsaturated Hydraulic Conductivity;96
9;Chapter 3: Clay Mineralogy and Clay Chemistry;102
9.1;Introduction;102
9.2;Mineral Weathering;103
9.2.1;Mineralogy;103
9.3;The Structure of Layer Silicates;106
9.3.1;Coordination Polyhedra;107
9.3.2;The Phyllosilicate Tetrahedral Sheet;108
9.3.3;The Phyllosilicate Octahedral Sheet;109
9.3.4;Kaolinite Layer Structure;110
9.3.5;Talc Layer Structure;110
9.3.6;Mica-Illite Layer Structure;111
9.3.7;Chlorite and Hydroxy-Interlayered Smectite Layer Structure;113
9.3.8;Layer Structure of the Swelling Clay Minerals: Smectite and Vermiculite;114
9.4;Formal Oxidation Numbers;121
9.5;The Geometry of Pauling's Radius Ratio Rule;122
9.6;Bragg's Law and X-Ray Diffraction in Layer Silicates;126
9.7;Osmotic Model of Interlayer Swelling Pressure;126
9.8;Experimental Estimates of Interlayer Swelling Pressure;128
10;Chapter 4: Ion Exchange;134
10.1;Introduction;134
10.2;The Discovery of Ion Exchange;135
10.3;Ion Exchange Experiments;136
10.3.1;Preparing Clay Saturated with a Single Cation;136
10.3.2;Measuring Cation Exchange Capacity;137
10.3.3;Measuring the Cation Exchange Isotherm;137
10.3.4;Selectivity Coefficients and the Exchange Isotherm;139
10.4;Interpreting the Ion Exchange Isotherm;142
10.4.1;The Ion Exchange Isotherm for Symmetric Exchange;143
10.4.2;The Ion Exchange Isotherm for Asymmetric Exchange;144
10.4.3;Effect of Ionic Strength on the Ion Exchange Isotherm;146
10.4.4;Effect of Ion Selectivity on the Ion Exchange Isotherm;148
10.4.5;Other Influences on the Ion Exchange Isotherm;155
10.4.6;Summary;157
10.4.7;Thermodynamic and Conditional Selectivity Coefficients;159
10.4.8;Nonlinear Least Square Fitting of Exchange Isotherms;160
10.4.9;Equivalent Fraction-Dependent Selectivity Coefficient for (Mg2+, Ca2+) Exchange on the Libby Vermiculite;161
11;Chapter 5: Water Chemistry;168
11.1;The Equilibrium Constant;168
11.1.1;Thermodynamic Functions for Chemical Reactions;168
11.1.2;Gibbs Energy of Reaction and the Equilibrium Constant;169
11.2;Activity and the Equilibrium Constant;170
11.2.1;Concentrations and Activity;170
11.2.2;Ionic Strength I;171
11.2.3;Empirical Ion Activity Coefficient Expressions;171
11.3;Modeling Water Chemistry;173
11.3.1;Simple Equilibrium Systems;173
11.3.2;Water Chemistry Simulations;187
11.3.3;Modeling the Chemistry of Environmental Samples: Groundwater, Soil Pore Water, and Surface Water;196
11.4;Summary;204
11.5;ChemEQL Result Data File Format;204
11.6;Validating Water Chemistry Simulations;205
11.7;Validation Assessment for Examples 5.13 and 5.16;210
11.7.1;Example 5.13: Gypsum Solubility;210
11.7.2;Example 5.16: Gibbsite Solubility;211
11.8;Cinnabar Solubility in an Open System Containing the Gas Dihydrogen Sulfide;213
11.9;Simultaneous Calcite-Apatite-Pyromorphite Solubility;216
11.10;Simultaneous Gibbsite-Variscite Solubility;217
11.11;Apatite Solubility as a Function of pH;217
11.12;Effect of the Citrate on the Solubility of the Calcium Phosphate Mineral Apatite;218
11.13;Effect of the Bacterial Siderophore Desferrioxamine B on the Solubility of the Iron Oxyhydroxide Goethite;220
12;Chapter 6: Natural Organic Matter and Humic Colloids;226
12.1;Introduction;226
12.2;Soil Carbon Cycle;226
12.2.1;Carbon Fixation;227
12.2.2;Carbon Mineralization;229
12.2.3;Oxidation of Organic Compounds by Dioxygen;230
12.3;Soil Carbon;234
12.3.1;Carbon Turnover Models;234
12.3.2;Soil Carbon Pools;238
12.4;Dissolved Organic Carbon;240
12.4.1;Organic Acids;240
12.4.2;Amino Acids;241
12.4.3;Extracellular Enzymes;241
12.4.4;Siderophores;241
12.4.5;Biosurfactants;245
12.5;Humic Substances;246
12.5.1;Extraction and Fractionation;246
12.5.2;Elemental Composition;247
12.5.3;Chemical Composition;248
12.6;Humic Colloids;262
12.7;Summary;263
12.8;Hydroxamate and Catecholamide Siderophore Moieties;264
12.9;Surface Microlayers;267
12.10;Humic Oxygen Content and Titratable Weak Acids;269
12.11;Hydrophobic and Hydrophilic Colloids;269
13;Chapter 7: Acid-Base Chemistry;274
13.1;Introduction;274
13.2;Principles of Acid-Base Chemistry;275
13.2.1;Dissociation: The Arrhenius Model of Acid-Base Reactions;275
13.2.2;Hydrogen Ion Transfer: the Brønsted-Lowery Model of Acid-Base Reactions;276
13.2.3;Conjugate Acids and Bases;276
13.2.4;Defining Acid and Base Strength;277
13.2.5;Water Reference Level;278
13.2.6;The Aqueous Carbon Dioxide Reference Level;279
13.3;Sources of Environmental Acidity and Basicity;280
13.3.1;Chemical Weathering of Rocks and Minerals;282
13.3.2;Silicate Rocks;282
13.3.3;Carbonate Rocks;284
13.3.4;Sulfide Minerals;285
13.3.5;Evaporite Rocks;286
13.4;Atmospheric Gases;286
13.4.1;Carbon Dioxide: Above Ground;286
13.4.2;Carbon Dioxide: Below Ground;288
13.4.3;Sulfur Oxides;288
13.4.4;Nitrogen Oxides;290
13.5;Ammonia-Based Fertilizers and Biomass Harvesting;293
13.6;Charge Balancing in Plant Tissue and the Rhizosphere;295
13.6.1;Water Alkalinity;297
13.6.2;Carbonate Alkalinity;298
13.6.3;Silicate Alkalinity;298
13.6.4;The Methyl Orange End-Point;299
13.6.5;Mineral Acidity;300
13.7;Mechanical Properties of Clay Colloids and Soil Sodicity;300
13.7.1;Clay Plasticity and Soil Mechanical Properties;301
13.7.2;Clay Content and Granular Particle Contacts;303
13.7.3;Sodicity;305
13.7.4;Sodium-Ion Accumulation on the Clay Exchange Complex: ESP;306
13.7.5;Pore Water Electrical Conductivity ECW;309
13.7.6;Extreme Alkalinity: Soil pH>8.4;310
13.7.7;Predicting Changes in Pore Water SAR;313
13.8;Exchangeable Acidity;315
13.8.1;Exchangeable Calcium and Soil Alkalinity;315
13.8.2;Gibbsite Solubility;315
13.8.3;The Role of Asymmetric (Al3+,Ca2+) Exchange;317
13.8.4;Neutralizing Exchangeable Soil Acidity;318
13.8.5;Summary;319
13.8.6;Buffer Index;320
13.8.7;Converting Mass Fraction to Sum-of-Oxides Composition;322
13.8.8;Saturation Effect: Atmospheric Conversion of Sulfur Trioxide to Sulfuric Acid;322
13.8.9;Bicarbonate and Carbonate Reference Levels;323
13.8.10;Calculating the pH of a Sodium Carbonate Solution;325
13.8.11;Calculating the Aqueous Carbon Dioxide Concentration in a Weak Base Solution;326
13.8.12;Ion Exchange Isotherm for Asymmetric (Ca2+, Al3+) Exchange;327
13.8.13;The Effect of (Na+, Ca2+) Exchange on the Critical Coagulation Concentration of Montmorillonite;330
13.8.14;Predicting Changes in SAR by Water Chemistry Simulation;333
14;Chapter 8: Redox Chemistry;338
14.1;Introduction;338
14.2;Redox Principles;339
14.2.1;Formal Oxidation Numbers;339
14.2.2;Balancing Reduction Half Reactions;341
14.2.3;Reduction Half Reactions and Electrochemical Cells;343
14.2.4;The Nernst Equation;344
14.3;Interpreting Redox Stability Diagrams;348
14.4;Environmental Redox Conditions;348
14.5;Measuring Environmental Reduction Potentials Using Platinum Oxidation-Reduction Electrodes;350
14.6;Pourbaix Stability Diagrams: Preparation and Interpretation;351
14.7;Water Stability Limits;351
14.8;The Solute-Solute Reduction Boundary;353
14.9;The Solute-Solute Hydrolysis Boundary;355
14.10;The Solute-Precipitate Boundary;356
14.11;The Solute-Precipitate Reduction Boundary;357
14.12;The Precipitate-Precipitate Reduction Boundary;358
14.13;Simple Rules for Interpreting Pourbaix Diagrams;360
14.14;Microbial Respiration and Electron Transport Chains;362
14.14.1;Catabolism and Respiration;364
14.14.2;Electron Transport Chains;366
14.14.3;Environmental Redox Conditions and Microbial Respiration;377
14.14.4;Summary;378
14.14.5;Assigning Formal Oxidation Numbers;379
14.14.6;Converting (pe, pH) Redox Coordinates into (EH, pH) Coordinates;380
14.14.7;Limitations in the Measurement of the Environmental Reduction Potential Using Platinum ORP Electrodes;382
15;Chapter 9: Adsorption and Surface Chemistry;388
15.1;Introduction;388
15.2;Mineral and Organic Colloids as Environmental Adsorbents;389
15.3;The Adsorption Isotherm Experiment;391
15.4;Hydrophobic and Hydrophilic Colloids;396
15.5;Interpreting the Adsorption Isotherm Experiment;396
15.5.1;The Langmuir Adsorption Model;397
15.5.2;Ion Exchange Adsorption Isotherms;399
15.5.3;Linear Adsorption or Partitioning Model;400
15.6;Variable-Charge Mineral Surfaces;404
15.6.1;The Adsorption Envelope Experiment: Measuring pH-Dependent Ion Adsorption;405
15.6.2;Adsorption Edges;406
15.6.3;Measuring pH-Dependent Surface Charge;407
15.6.4;Proton Surface Charge Sites;408
15.7;Valence Bond Model of Proton Sites;409
15.7.1;Interpreting pH-Dependent Ion Adsorption Experiments;411
15.8;Surface Complexes;412
15.9;Summary;416
15.10;Particle Sedimentation Rates in Water: Stokes's Law;417
15.11;Linear Langmuir Expression;418
15.12;Hydrolysis Model of Proton Sites;419
16;Chapter 10: Risk Assessment;426
16.1;Introduction;426
16.2;The Federal Risk Assessment Paradigm;428
16.2.1;Risk Assessment;428
16.2.2;Risk Management and Mitigation;428
16.2.3;Dose-Response Assessment;428
16.2.3.1;Dose-Response Distributions;429
16.2.3.2;The No-Threshold One-Hit Model;430
16.2.3.3;Low-Dose Extrapolation of Noncarcinogenic Response Functions;431
16.2.3.4;Estimating the Steady-State Body Burden;432
16.2.3.5;Reference Dose RfD;433
16.2.3.6;Low-Dose Extrapolation of Carcinogenic Response Functions;433
16.2.4;Exposure Pathway Assessment;436
16.2.4.1;Receptors;436
16.2.4.2;Exposure Routes;437
16.2.4.3;Exposure Points;439
16.2.4.4;Fate and Transport;440
16.2.4.5;Primary and Secondary Sources;441
16.2.4.6;Exposure Assessment;442
16.2.5;Intake Estimates;442
16.2.5.1;Averaging Time;442
16.2.5.2;Exposure Factors;444
16.2.6;Risk Characterization;445
16.2.6.1;The Incremental Excess Lifetime Cancer Risk;445
16.2.6.2;The Hazard Quotient;447
16.2.7;Exposure Mitigation;448
16.2.8;Summary;451
16.2.9;Chemical- and Site-Specific Factors that May Affect Contaminant Transport by Surface Water;452
16.2.10;Chemical- and Site-Specific Factors that May Affect Contaminant Transport by Groundwater;453
16.2.11;Chemical- and Site-Specific Factors that May Affect Contaminant Transport Involving Soils or Sediments;454
16.2.12;Chemical- and Site-Specific Factors that May Affect Contaminant Transport Involving Air and Biota;455
16.2.13;Water Ingestion Equation;455
16.2.14;Soil Ingestion Equation;458
16.2.15;Food Ingestion Equation;459
16.2.16;Air Inhalation Equation;459
16.2.17;Hazard Index-Cumulative Noncarcinogenic Risk;460
16.2.18;Cumulative Target Risk-Cumulative carcinogenic Risk;461
17;References;466
18;Index;480




