Buch, Englisch, 240 Seiten, Format (B × H): 193 mm x 235 mm
ISBN: 978-1-4614-1146-8
Verlag: Springer
This book introduces a novel paradigm for machine learning and data mining called predictive clustering, which covers a broad variety of learning tasks and offers a fresh perspective on existing techniques.
The book presents an informal introduction to predictive clustering, describing learning tasks and settings, and then continues with a formal description of the paradigm, explaining algorithms for learning predictive clustering trees and predictive clustering rules, as well as presenting the applicability of these learning techniques to a broad range of tasks. Variants of decision tree learning algorithms are also introduced. Finally, the book offers several significant applications in ecology and bio-informatics.
The book is written in a straightforward and easy-to-understand manner, aimed at varied readership, ranging from researchers with an interest in machine learning techniques to practitioners of data mining technology in the areas of ecology and bioinformatics.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Bioinformatik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Introduction.- What is predictive clustering?.- Motivation: A variety of predictive learning tasks.- Some basic approaches to prediction and clustering.- Formalizing predictive clustering.- Predictive clustering trees.- Predictive clustering rules.- Distances and prototype functions.- Predictive Clustering with Constraints.- Relational PCTs.- Applications in environmental sciences.- Applications in bioinformatics.- Clus