E-Book, Englisch, 177 Seiten, eBook
Blumenfeld / Tikhonov Biophysical Thermodynamics of Intracellular Processes
1994
ISBN: 978-1-4612-2630-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Molecular Machines of the Living Cell
E-Book, Englisch, 177 Seiten, eBook
ISBN: 978-1-4612-2630-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1 Introduction.- 2 Thermodynamics and Chemical Kinetics of Living Systems.- 2.1. How Scientists Learned to Distinguish Energy from Force (Brief Historic Review).- 2.2. Kinetics and Thermodynamics of Chemical Reactions.- 2.3. Applicability of Equilibrium and Nonequilibrium Thermodynamics to Biological Systems and Processes.- 2.4. The Mechanisms of Energy Coupling in Chemical Reactions.- 2.4.1. Indirect Mechanism of Energy Coupling in Equilibrium (Quasi-Equilibrium) Homogeneous Mixtures of Chemical Reagents.- 2.4.1.1. Enthalpic Mechanism of Indirect Coupling.- 2.4.1.2. Entropic Mechanism of Indirect Coupling.- 2.4.2. Entropic Mechanism of Coupling Chemical Reactions in Open Systems.- 3 Molecular Machines: Mechanics and/or Statistics?.- 3.1. The Second Law of Thermodynamics and Its Application to Biochemical Systems.- 3.2. Energy-Transducing Molecular Machines.- 3.2.1. Macroscopic Machines.- 3.2.2. What Are Molecular Machines? Reversibility of Energy-Transducing Devices and the Problem of the Optimal Functioning of Molecular Machines.- 3.2.3. Models for Calculating the Conversion Factor.- 3.3. Statistical Thermodynamics of Small Systems, Fluctuations, and the Violation of the Mass Action Law.- 3.3.1. Structural Peculiarities of Energy-Transducing Organelles of Chloroplasts.- 3.3.2. Chemical Equilibrium Inside Small Vesicles.- 3.3.3. Compartmentalization and the Problem of the Macroscopic Description of “Channeled” Chemical Reactions.- 3.3.4. The Fluctuations, Random Noise, Energy Transduction, and Apparent Violation of the Second Law of Thermodynamics.- 4 Principles of Enzyme Catalysis.- 4.1. Introduction.- 4.2. Earlier Theories of Enzyme Catalysis.- 4.3. The Relaxation Concept of Enzyme Catalysis.- 4.4. Protein Dynamics and Enzyme Functioning.- 4.4.1. Theoretical Aspects of Protein Structural Dynamics.- 4.4.2. Experimental Evidence for Protein Nonequilibrium States and Their Evolution in the Course of Enzyme Turnover.- 5 Energy Transduction in Biological Membranes.- 5.1. Introduction: Two Views on the Problem of Energy Coupling in Biomembranes.- 5.2. Transmembrane Electrochemical Proton Gradients in Chloroplasts.- 5.2.1. Brief Review of the Methods for the ?pH Measurements with pH-Indicating Probes.- 5.2.2. Measurements of ?pH in the Thylakoids with the Kinetic Method.- 5.2.3. Measurements of ?pH in the Thylakoids with a Spin Labeling Technique.- 5.2.4. Lateral Heterogeneity of ?pH in Chloroplasts.- 5.2.5. Membrane-Sequestered Proton Pools and Alternative Pathways of Proton Transport Coupled with ATP Synthesis.- 5.3. Mechanism of ATP Formation Catalyzed by H+ATPsynthases.- 5.3.1. An Elementary Act of ATP Synthesis.- 5.3.1.1. Initial Events of ATP Formation.- 5.3.1.2. Energy-Requiring Step of ATP Formation.- 5.3.1.3. ATP Synthesis from ADP and Pi Catalyzed by Water-Soluble Coupling Factor F1.- 5.3.1.4. ATP Synthesis Induced by the Acid-Base Transitions.- 5.3.1.5. ATP Synthesis from ADP and Pi as Considered from the Viewpoint of the Relaxation Concept of Enzyme Catalysis.- 5.3.2. ATP Synthesis under Steady State Conditions.- 5.3.2.1. The Possible Model for ATPsynthase Cyclic Functioning.- 5.3.2.2. Photophosphorylation in Chloroplasts and Oxidative Phosphorylation in Mitochondria.- Afterword.




