Buch, Englisch, Band 235, 362 Seiten, Format (B × H): 163 mm x 236 mm, Gewicht: 898 g
Reihe: Progress in Mathematics
Buch, Englisch, Band 235, 362 Seiten, Format (B × H): 163 mm x 236 mm, Gewicht: 898 g
Reihe: Progress in Mathematics
ISBN: 978-0-8176-4349-2
Verlag: Birkhauser Boston
The transparency and power of geometric constructions has been a source of inspiration to generations of mathematicians. The beauty and persuasion of pictures, communicated in words or drawings, continues to provide the intuition and arguments for working with complicated concepts and structures of modern mathematics. This volume contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory. The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry; the text can serve as an intense introduction for graduate students and those wishing to pursue research in these areas.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Elementare Geometrie: Allgemeines
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
Weitere Infos & Material
Beauville surfaces without real structures.- Couniformization of curves over number fields.- On the V-filtration of -modules.- Hecke orbits on Siegel modular varieties.- Ax-Kochen-Eršov Theorems for p-adic integrals and motivic integration.- Nested sets and Jeffrey-Kirwan residues.- Counting extensions of function fields with bounded discriminant and specified Galois group.- Classical and minimal models of the moduli space of curves of genus two.- Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve.- Mahler measure for dynamical systems on ?1 and intersection theory on a singular arithmetic surface.- A Combination of the Conjectures of Mordell-Lang and André-Oort.- Motivic approach to limit sheaves.- Counting points on cubic surfaces, II.- Quantum cohomology of isotropic Grassmannians.- Endomorphism algebras of superelliptic jacobians.