Bonchi / Boulicaut | Knowledge Discovery in Inductive Databases | Buch | 978-3-540-33292-3 | sack.de

Buch, Englisch, Band 3933, 252 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 830 g

Reihe: Lecture Notes in Computer Science

Bonchi / Boulicaut

Knowledge Discovery in Inductive Databases

4th International Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised Selected and Invited Papers
1. Auflage 2006
ISBN: 978-3-540-33292-3
Verlag: Springer

4th International Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised Selected and Invited Papers

Buch, Englisch, Band 3933, 252 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 830 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-33292-3
Verlag: Springer


The4thInternationalWorkshoponKnowledgeDiscoveryinInductiveDatabases (KDID 2005) was held in Porto, Portugal, on October 3, 2005 in conjunction with the 16th European Conference on Machine Learning and the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases. Ever since the start of the ?eld of data mining, it has been realized that the integration of the database technology into knowledge discovery processes was a crucial issue. This vision has been formalized into the inductive database perspective introduced by T. Imielinski and H. Mannila (CACM 1996, 39(11)). The main idea is to consider knowledge discovery as an extended querying p- cess for which relevant query languages are to be speci?ed. Therefore, inductive databases might contain not only the usual data but also inductive gener- izations (e. g., patterns, models) holding within the data. Despite many recent developments, there is still a pressing need to understand the central issues in inductive databases. Constraint-based mining has been identi?ed as a core technology for inductive querying, and promising results have been obtained for rather simple types of patterns (e. g., itemsets, sequential patterns). However, constraint-based mining of models remains a quite open issue. Also, coupling schemes between the available database technology and inductive querying p- posals are not yet well understood. Finally, the de?nition of a general purpose inductive query language is still an on-going quest.

Bonchi / Boulicaut Knowledge Discovery in Inductive Databases jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Invited Papers.- Data Mining in Inductive Databases.- Mining Databases and Data Streams with Query Languages and Rules.- Contributed Papers.- Memory-Aware Frequent k-Itemset Mining.- Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data.- Experiment Databases: A Novel Methodology for Experimental Research.- Quick Inclusion-Exclusion.- Towards Mining Frequent Queries in Star Schemes.- Inductive Databases in the Relational Model: The Data as the Bridge.- Transaction Databases, Frequent Itemsets, and Their Condensed Representations.- Multi-class Correlated Pattern Mining.- Shaping SQL-Based Frequent Pattern Mining Algorithms.- Exploiting Virtual Patterns for Automatically Pruning the Search Space.- Constraint Based Induction of Multi-objective Regression Trees.- Learning Predictive Clustering Rules.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.