Boor / Riemenschneider / Höllig | Box Splines | Buch | 978-0-387-94101-1 | sack.de

Buch, Englisch, Band 98, 201 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1100 g

Reihe: Applied Mathematical Sciences

Boor / Riemenschneider / Höllig

Box Splines


1993
ISBN: 978-0-387-94101-1
Verlag: Springer US

Buch, Englisch, Band 98, 201 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1100 g

Reihe: Applied Mathematical Sciences

ISBN: 978-0-387-94101-1
Verlag: Springer US


Compactly supported smooth piecewise polynomial functions provide an efficient tool for the approximation of curves and surfaces and other smooth functions of one and several arguments. Since they are locally polynomial, they are easy to evaluate. Since they are smooth, they can be used when smoothness is required, as in the numerical solution of partial differential equations (in the Finite Element method) or the modeling of smooth sur­ faces (in Computer Aided Geometric Design). Since they are compactly supported, their linear span has the needed flexibility to approximate at all, and the systems to be solved in the construction of approximations are 'banded'. The construction of compactly supported smooth piecewise polynomials becomes ever more difficult as the dimension, s, of their domain G ~ IRs, i. e., the number of arguments, increases. In the univariate case, there is only one kind of cell in any useful partition, namely, an interval, and its boundary consists of two separated points, across which polynomial pieces would have to be matched as one constructs a smooth piecewise polynomial function. This can be done easily, with the only limitation that the num­ ber of smoothness conditions across such a breakpoint should not exceed the polynomial degree (since that would force the two joining polynomial pieces to coincide). In particular, on any partition, there are (nontrivial) compactly supported piecewise polynomials of degree ~ k and in C(k-l), of which the univariate B-spline is the most useful example.

Boor / Riemenschneider / Höllig Box Splines jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


I • Box splines defined.- II • The linear algebra of box spline spaces.- III • Quasi-interpolants & approximation power.- IV • Cardinal interpolation & difference equations.- V • Approximation by cardinal splines & wavelets.- VI • Discrete box splines & linear diophantine equations.- VII Subdivision algorithms.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.