E-Book, Englisch, Band 69, 329 Seiten
Reihe: Progress in Nonlinear Differential Equations and Their Applications
Bove / Colombini / Del Santo Phase Space Analysis of Partial Differential Equations
1. Auflage 2007
ISBN: 978-0-8176-4521-2
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 69, 329 Seiten
Reihe: Progress in Nonlinear Differential Equations and Their Applications
ISBN: 978-0-8176-4521-2
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark
Covers phase space analysis methods, including microlocal analysis, and their applications to physics Treats the linear and nonnlinear aspects of the theory of PDEs Original articles are self-contained with full proofs; survey articles give a quick and direct introduction to selected topics evolving at a fast pace Excellent reference and resource for grad students and researchers in PDEs and related fields
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;7
2;Contents;9
3;List of Contributors;11
4;Trace theorem on the Heisenberg group on homogeneous hypersurfaces;15
4.1;1 Introduction;15
4.2;2 A Hardy type inequality;20
4.3;3 The proof of the trace and trace lifting theorem;24
4.4;4 Concluding remarks;28
4.5;References;28
5;Strong unique continuation and finite jet determination for Cauchy – Riemann mappings;30
5.1;1 Introduction;30
5.2;2 Local coordinates;31
5.3;3 Nondegeneracy conditions;33
5.4;4 Necessary conditions and su.cient conditions for finite jet determination;35
5.5;5 Lie group structures and jet parameterization;37
5.6;References;40
6;On the Cauchy problem for some hyperbolic operator with double characteristics;42
6.1;1 Introduction and statements;42
6.2;2 The model operator;44
6.3;3 Shibuya solutions;45
6.4;4 Stokes multipliers;47
6.5;5 Asymptotic analysis;49
6.6;6 Final steps in the proof of the necessary condition;55
6.7;References;57
7;On the differentiability class of the admissible square roots of regular nonnegative functions;58
7.1;1 Introduction;58
7.2;2 Regularity of well-chosen admissible roots;59
7.3;References;66
8;The Benjamin–Ono equation in energy space;67
8.1;1 Introduction;67
8.2;2 Bourgain spaces;69
8.3;3 A priori estimate on weak solutions;70
8.4;4 The gauge transformation;71
8.5;5 The existence and uniqueness result;73
8.6;References;74
9;Instabilities in Zakharov equations for laser propagation in a plasma;75
9.1;1 Introduction;75
9.2;2 The instability mechanism;78
9.3;3 Scheme of the proof;80
9.4;4 The linear instability;84
9.5;5 The linear equation;89
9.6;6 End of proofs;92
9.7;References;93
10;Symplectic strata and analytic hypoellipticity;94
10.1;1 Introduction;94
10.2;2 The symplectic case;95
10.3;3 The example of Baouendi–Goulaouic;95
10.4;4 Treves’ original conjecture;96
10.5;5 The Poisson stratification of S;97
10.6;6 Examples;98
10.7;7 Treves’ conjecture;98
10.8;8 Symplectic strata of codimension 2;99
10.9;9 Sketch of the proof;100
10.10;References;103
11;On the backward uniqueness property for a class of parabolic operators;106
11.1;1 Introduction, statements and remarks;106
11.2;2 Proof of Theorem 1.1;110
11.3;3 Proof of Theorem 1.2;114
11.4;References;116
12;Inverse problems for hyperbolic equations;117
12.1;1 Formulation of the problem and the main theorem;117
12.2;2 Hyperbolic systems with Yang–Mills potentials and domains with obstacles;120
12.3;3 A geometric optics approach;124
12.4;References;125
13;On the optimality of some observability inequalities for plate systems with potentials ;127
13.1;1 Introduction;128
13.2;2 Preliminaries;132
13.3;3 The sharp observability estimate;135
13.4;4 Extension of Meshkov’s construction to the bi-Laplacian equation;138
13.5;5 Optimality of the observability constant for plate systems;139
13.6;6 Further remarks and open problems;141
13.7;References;141
14;Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach;143
14.1;Introduction;143
14.2;1 A general setting and a motivating example;144
14.3;2 Weak symplectic manifolds;149
14.4;3 Right invariant weak Riemannian metrics on Lie groups;157
14.5;4 The Hamiltonian approach;165
14.6;5 Vanishing H0-geodesic distance on groups of diffeomorphisms;171
14.7;6 The regular Lie group of rapidly decreasing diffeomorphisms;179
14.8;7 The diffeomorphism group of S1 or R, and Burgers’ hierarchy;188
14.9;8 The Virasoro–Bott group and the Korteweg–de Vries hierarchy;195
14.10;Appendix A Smooth calculus beyond Banach spaces;212
14.11;Appendix B Regular infinite-dimensional Lie groups;216
14.12;References;223
15;Non-effectively hyperbolic operators and bicharacteristics;226
15.1;1 Introduction;226
15.2;2 Non-effectively hyperbolic symbols, elementary decomposition and a priori estimates;227
15.3;3 Conditions for elementary decomposition;231
15.4;4 Behavior of bicharacteristics and elementary decomposition;240
15.5;5 Remarks;254
15.6;References;254
16;On the Fefferman–Phong inequality for systems of PDEs;256
16.1;1 Introduction;256
16.2;2 Background on the Weyl–Hörmander calculus;258
16.3;3 A proof by induction on the size of the system;260
16.4;References;274
17;Local energy decay and Strichartz estimates for the wave equation with time-periodic perturbations;276
17.1;1 Introduction;276
17.2;2 Resonances for time-periodic potentials;278
17.3;3 Strichartz estimates;282
17.4;4 Non-trapping moving obstacles;285
17.5;5 Trapping moving obstacles;289
17.6;References;293
18;An elementary proof of Fedili’s theorem and extensions;295
18.1;1 Introduction;295
18.2;2 Proof of the theorem;296
18.3;References;298
19;Outgoing parametrices and global Strichartz estimates for Schrödinger equations with variable coefficients;299
19.1;1 Introduction;299
19.2;2 Outline of the proofs;305
19.3;References;320
20;On the analyticity of solutions of sums of squares of vector fields;322
20.1;1 Global Poisson stratification;324
20.2;2 The analyticity conjectures;328
20.3;References;335




