Buch, Englisch, 566 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 890 g
Buch, Englisch, 566 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 890 g
Reihe: Springer Monographs in Mathematics
ISBN: 978-3-030-36784-8
Verlag: Springer International Publishing
The book faces the interplay among dynamical properties of semigroups, analytical properties of infinitesimal generators and geometrical properties of Koenigs functions. The book includes precise descriptions of the behavior of trajectories, backward orbits, petals and boundary behavior in general, aiming to give a rather complete picture of all interesting phenomena that occur. In order to fulfill this task, we choose to introduce a new point of view, which is mainly based on the intrinsic dynamical aspects of semigroups in relation with the hyperbolic distance and a deep use of Carathéodory prime ends topology and Gromov hyperbolicity theory. This work is intended both as a reference source for researchers interested in the subject, and as an introductory book for beginners with a (undergraduate) background in real and complex analysis. For this purpose, the book is self-contained and all non-standard (and, mostly, all standard) results are provedin details.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionentheorie, Komplexe Analysis
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
Weitere Infos & Material
Part I: Preliminaries.- 1 Hyperbolic geometry and interation.- 2. Holomorphic functions with non-negative real part.- 3. Univalent functions.- 4. Carathéodory’s prime ends theory.- 5. Hyperbolic geometry in simply connected domains.- 6. Quasi-geodesics and localization.- 7. Harmonic measures and Bloch functions.- Part II: Semigroups.- 8 Semigroups of holomorphic functions.- 9 Models and Koenigs functions.- 10 In?nitesimal generators.- 11 Extension to the boundary.- 12 Boundary ?xed points and in?nitesimal generators.- 13 Fixed points, backward invariant sets and petals.- 14 Contact points.- 15 Poles of the in?nitesimal generators.- 16 Rate of convergence at the Denjoy-Wolffpoint.- 17 Slopes of orbits at the Denjoy-Wolffpoint.- 18 Topological invariants