Buch, Englisch, 332 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 669 g
An Introduction to the LLL Algorithm and Its Applications
Buch, Englisch, 332 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 669 g
Reihe: Chapman & Hall Pure and Applied Mathematics
ISBN: 978-1-4398-0702-6
Verlag: CRC Press
First developed in the early 1980s by Lenstra, Lenstra, and Lovász, the LLL algorithm was originally used to provide a polynomial-time algorithm for factoring polynomials with rational coefficients. It very quickly became an essential tool in integer linear programming problems and was later adapted for use in cryptanalysis. This book provides an introduction to the theory and applications of lattice basis reduction and the LLL algorithm. With numerous examples and suggested exercises, the text discusses various applications of lattice basis reduction to cryptography, number theory, polynomial factorization, and matrix canonical forms.
Zielgruppe
Academic
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
- Mathematik | Informatik EDV | Informatik Technische Informatik Computersicherheit Datensicherheit, Datenschutz
Weitere Infos & Material
Introduction to Lattices. Two-Dimensional Lattices. Gram-Schmidt Orthogonalization. The LLL Algorithm. Deep Insertions. Linearly Dependent Vectors. The Knapsack Problem. Coppersmith’s Algorithm. Diophantine Approximation. The Fincke-Pohst Algorithm. Kannan’s Algorithm. Schnorr’s Algorithm. NP-Completeness. The Hermite Normal Form. Polynomial Factorization.