Buch, Englisch, 1046 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 1762 g
Reihe: Cambridge Molecular Science
Buch, Englisch, 1046 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 1762 g
Reihe: Cambridge Molecular Science
ISBN: 978-0-521-53078-1
Verlag: Cambridge University Press
Written to be the definitive text on the rotational spectroscopy of diatomic molecules, this book develops the theory behind the energy levels of diatomic molecules and then summarises the many experimental methods used to study their spectra in the gaseous state. After a general introduction, the methods used to separate nuclear and electronic motions are described. Brown and Carrington then show how the fundamental Dirac and Breit equations may be developed to provide comprehensive descriptions of the kinetic and potential energy terms which govern the behaviour of the electrons. One chapter is devoted solely to angular momentum theory and another describes the development of the so-called effective Hamiltonians used to analyse and understand the experimental spectra of diatomic molecules. The remainder of the book concentrates on experimental methods. This book will be of interest to graduate students and researchers interested in the rotational spectroscopy of diatomic molecules.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Quantenphysik Atom- und Molekülphysik
- Naturwissenschaften Chemie Physikalische Chemie
- Naturwissenschaften Physik Physik Allgemein Experimentalphysik
- Naturwissenschaften Physik Elektromagnetismus Mikroskopie, Spektroskopie
- Naturwissenschaften Chemie Analytische Chemie Magnetresonanz
Weitere Infos & Material
1. General introduction; 2. The separation of nuclear and electronic motion; 3. The electronic hamiltonian; 4. Interactions arising from nuclear magnetic and electric moments; 5. Angular momentum theory and spherical tensor algebra; 6. Electronic and vibrational states; 7. Derivation of the effective hamiltonian; 8. Molecular beam magnetic and electric resonance; 9. Microwave and far-infrared magnetic resonance; 10. Pure rotational spectroscopy; 11. Double resonance spectroscopy; Appendices.