Buch, Englisch, 137 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 2409 g
École d'Été de Probabilités de Saint-Flour XLIII - 2013
Buch, Englisch, 137 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 2409 g
Reihe: École d'Été de Probabilités de Saint-Flour
ISBN: 978-3-319-04393-7
Verlag: Springer International Publishing
These lecture notes provide an introduction to the applications of Brownian motion to analysis and more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics.
The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. Brownian motion.- 2. Probabilistic proofs of classical theorems.- 3. Overview of the "hot spots" problem.- 4. Neumann eigenfunctions and eigenvalues.- 5. Synchronous and mirror couplings.- 6. Parabolic boundary Harnack principle.- 7. Scaling coupling.- 8. Nodal lines.- 9. Neumann heat kernel monotonicity.- 10. Reflected Brownian motion in time dependent domains.