Burk | Techno-Economic Modeling for Chemical and Bioprocess Innovations | Buch | 978-1-394-24641-0 | www.sack.de

Buch, Englisch, 368 Seiten, Format (B × H): 152 mm x 226 mm, Gewicht: 567 g

Burk

Techno-Economic Modeling for Chemical and Bioprocess Innovations


1. Auflage 2025
ISBN: 978-1-394-24641-0
Verlag: Wiley

Buch, Englisch, 368 Seiten, Format (B × H): 152 mm x 226 mm, Gewicht: 567 g

ISBN: 978-1-394-24641-0
Verlag: Wiley


Build spreadsheet-based techno-economic models to understand factors driving economic value

Techno-economic modeling examines how technical and financial parameters influence the economic value of a technology at the commercial scale. Techno-Economic Modeling for Chemical and Bioprocess Innovations is a practical guide to building spreadsheet-based techno-economic models and using them to make better decisions on the road to market.

Inside, this book: - Explains the role of techno-economic modeling in advancing new technologies toward commercialization.
- Presents spreadsheet best practices that form the foundation for effective and efficient techno-economic modeling.
- Teaches how to combine process modeling, equipment sizing, and cost estimation in a cohesive and usable spreadsheet model.
- Introduces techniques for analyzing model results to assess economic viability, quantify uncertainty, inform R&D priorities, and improve stakeholder communication.
- Provides practical Excel and VBA examples, with two complete sample models available online.

This book equips readers with the tools to combine science, engineering, and cost estimation. It is an essential resource for chemical and bioprocess engineers, including academics, startup teams, and advanced students working to bring innovations into the world.

Burk Techno-Economic Modeling for Chemical and Bioprocess Innovations jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Short Affiliation xvii

Preface xix

Acknowledgments xxiii

About the Companion Website xxv

Introduction xxvii

Part I Spreadsheet Development 1

1 Introduction to Part I 3

1.1 Uses for Spreadsheets 3

1.2 Why Spreadsheets for TEM? 4

1.3 Alternative Techno-Economic Modeling Platforms 5

1.4 Importance of Good Spreadsheet Development Practices 6

1.5 Spreadsheet Development as Software Development 6

1.6 Back-End and Front-End Spreadsheet Development 7

1.7 Important Terms 8

1.7.1 Introduction 8

1.7.2 Anatomy of the Excel User Interface 8

1.7.3 Anatomy of an Excel Formula 10

1.7.4 Other Important Terms 11

1.8 Key Functions 11

1.8.1 Math Functions 11

1.8.2 Statistical Functions 12

1.8.3 Lookup Functions 12

1.8.4 Logical Functions 12

1.8.5 Financial Functions 12

1.8.6 Text Functions 13

1.9 Keyboard Shortcuts 13

Reference 14

2 Back-End Development 15

2.1 Cell-Level Best Practices 16

2.1.1 Keep Formulas Short 17

2.1.2 Avoid Hard-Coding Numbers 18

2.1.3 Perform Calculations in a Consistent Unit Set 19

2.1.4 Avoid Using Off-Sheet References in Formulas 19

2.1.5 Avoid Linking Workbooks 21

2.1.6 Use Named Ranges Where Appropriate 21

2.1.7 Consider Replacing Complex Formulas with User-Defined Function 22

2.1.8 Treat Percentages as Decimals 23

2.1.9 Omit Unnecessary Symbols 23

2.2 Worksheet- and Workbook-Level Best Practices 23

2.2.1 Perform Calculations in Parallel When Possible 24

2.2.2 Build Models to Examine a Single Scenario 25

2.2.3 Perform Each Calculation Only Once 25

2.2.4 Master Tracing Formulas 27

2.2.4.1 Keep Lookup Formulas Local 28

2.2.5 Separate Workbooks into Logical Worksheets 29

2.2.6 Make Calculations and Worksheets Modular 29

2.2.7 Regularly Refactor 30

3 Front-End Development 31

3.1 General Principles of User Interface Design 31

3.2 Cell-Level and Formatting Best Practices 33

3.2.1 Differentiate Input Cells 33

3.2.2 Be Explicit with Labels and Units 33

3.2.3 Omit Unnecessary Labels 33

3.2.4 Use Appropriate Number Formatting 34

3.2.5 Turn Gridlines Off 35

3.2.6 Avoid Merging Cells 36

3.2.7 Use Consistent Cell Alignment and Indenting 36

3.2.8 Set Consistent Cell Sizes 37

3.3 Worksheet- and Workbook-Level Best Practices 38

3.3.1 Choose Table Orientation Deliberately 38

3.3.2 Use Named Ranges for Constants and Store them in a Dedicated Worksheet 38

3.3.3 Leave Some White Space 38

3.4 User Interface Best Practices 40

3.4.1 Emphasize Important Inputs and Results 40

3.4.2 Include a Dashboard 40

3.4.3 Use Graphs and Charts to Visually Represent Results 41

3.4.4 Consider the User’s Screen Size and Use 41

Reference 42

4 Documentation 43

4.1 Nearby Cells 44

4.2 Cell Notes 44

4.3 Dedicated Location Within Worksheet 46

4.4 Dedicated Worksheet 47

4.5 Separate Document 47

4.6 Screencast 48

Reference 48

5 Visual Basic for Applications 49

5.1 VBA Basics 49

5.1.1 Enabling Macros 49

5.1.2 The VBA Editor 51

5.1.3 Dot Notation and the Object Model 53

5.1.4 Subroutines and Functions 53

5.1.4.1 Comments 54

5.1.5 Variables 54

5.2 Working with VBA 56

5.2.1 Scope 56

5.2.2 Loops 57

5.2.3 Conditional Statements 57

5.2.4 With Statements 58

5.2.5 Arrays and Collections 58

5.2.6 Error Handling 60

5.2.7 Debugging 63

5.3 Applications to TEM 64

5.3.1 When to Use VBA 64

5.3.2 User-Defined Functions 65

5.3.3 Macros 67

5.3.4 Improving Calculation Speed 70

5.4 AI-Assisted Coding 71

Part II Techno-Economic Modeling 73

6 Introduction to Part II 75

6.1 Methods and Accuracy 77

6.2 Anatomy of a Techno-Economic Model 78

Reference 80

7 Process Diagrams 81

7.1 Types and Use of Process Diagrams 81

7.1.1 Block Flow Diagrams (BFDs) 82

7.1.2 Process Flow Diagrams (PFDs) 82

7.1.3 Piping and Instrumentation Diagrams (P&IDs) 82

7.1.4 Hybrid Diagrams 86

7.1.5 Process Sequence Diagrams 86

7.2 Defining Model Scope 86

7.3 Best Practices 89

7.3.1 General Considerations 89

7.3.2 Organization 90

7.3.3 Labeling 91

7.4 Concluding Thoughts 93

References 94

8 Process Modeling 95

8.1 Spreadsheet Structure and Organization 95

8.1.1 Settings 96

8.1.2 Calculations 98

8.1.3 Stream Table 98

8.1.4 Results 98

8.2 The Stream Table 98

8.2.1 Stream Properties 99

8.2.1.1 Description 101

8.2.1.2 Total and Component Mass Flow Rates 101

8.2.1.3 Total and Component Mole Flow Rates 101

8.2.1.4 Volume Rate, Density, and Average Molecular Weight 101

8.2.1.5 Temperature and Pressure 102

8.2.1.6 Enthalpy Rate and Heat Capacity 103

8.3 Material Balance Calculations 104

8.3.1 Solving the Stream Table 105

8.3.2 Recycles 107

8.3.2.1 Recycle Constrained by Overall Conversion 108

8.3.2.2 Processes Constrained by Impurity Concentration 109

8.3.3 Material Rate Basis and Onstream Factor 111

8.3.3.1 Continuous Processes 111

8.3.3.2 Batch Processes 112

8.3.3.3 Other Considerations 112

8.3.4 Integrated Material Balance Verification 113

8.4 Energy Balance Calculations 113

8.4.1 Enthalpy Balances in the Stream Table 114

8.4.2 Heat Exchangers 114

8.4.2.1 Heat Exchange Between Streams 114

8.5 Special Topics 120

8.5.1 Stoichiometry 120

8.5.2 Vapor–Liquid Equilibria 122

8.5.3 Distillation 123

8.5.4 Packed Beds 124

8.5.5 Electrochemistry 125

8.6 Development Workflow 128

Reference 128

9 Equipment Sizing 129

9.1 Spreadsheet Structure and Organization 131

9.2 Utility Calculations 132

9.2.1 Fuel 135

9.2.2 Electricity 135

9.2.3 Process Water 136

9.2.4 Steam 136

9.2.5 Thermal Fluids 139

9.2.6 Cooling Water 139

9.2.7 Refrigeration 140

9.2.8 Demineralized Water 142

9.2.9 Other Utilities 142

9.3 Sizing Calculations 143

9.3.1 Vessels 143

9.3.1.1 General Sizing Calculations 143

9.3.1.2 General Utility Calculations for Vessels 144

9.3.1.3 Liquid-Filled Vessels 146

9.3.1.4 Fermenters 147

9.3.1.5 Active-Material-Packed Vessels 148

9.3.1.6 Vapor–Liquid Separation Vessels 149

9.3.2 Columns 151

9.3.2.1 Distillation Columns 151

9.3.2.2 Absorption and Stripping Columns 153

9.3.3 Fluid Moving Equipment 153

9.3.3.1 Pumps 154

9.3.3.2 Compressors 154

9.3.3.3 Blowers and Fans 155

9.3.3.4 Vacuum Pumps 157

9.3.4 Heat Exchangers 158

9.3.5 Heaters and Furnaces 159

9.3.6 Filters 159

9.3.7 Membrane Systems 160

9.3.8 Sedimentation Centrifuges 160

9.3.9 Electrochemical Cells 161

9.3.10 Unusual or Novel Equipment 161

9.4 Materials of Construction 162

9.4.1 Corrosion/Material Compatibility 162

9.4.2 Strength 163

9.4.3 Application-Specific Requirements 163

9.5 Development Workflow 163

References 164

10 Equipment Costing 165

10.1 Structure and Organization 165

10.2 Power-Law Scaling 166

10.2.1 Estimating Scaling Exponents from Data 171

10.2.2 Geometrical Underpinnings of Scaling Exponents 171

10.2.3 Breaking Down a Scaling Exponent 172

10.2.4 The Blended Scaling Exponent 173

10.2.5 Limitations of Power-Law Scaling 175

10.2.6 The Importance of Similarity 175

10.2.7 Novel or Unusual Equipment 176

10.3 Factors for Adjusting Purchase Cost 177

10.3.1 Material Factors 177

10.3.2 Pressure Factors 178

10.3.3 Miscellaneous Factors 179

10.3.4 Cost Escalation 179

10.4 Installation Factors 181

10.5 Putting It All Together 182

10.6 Development Workflow 187

References 188

11 Capital Cost Estimation 189

11.1 Important Distinctions 189

11.2 Methods for Estimating Fixed Capital 191

11.2.1 Equipment Factor Method 191

11.2.2 Lang Factor Method 194

11.2.3 Overall Plant Cost Scaling Method 194

References 195

12 Operating Costs and Revenue Estimation 197

12.1 Structure and Organization 197

12.2 Variable Operating Costs 199

12.2.1 Raw Materials 199

12.2.2 Consumables 201

12.2.3 Utilities 201

12.2.4 Waste Management 202

12.3 Operating Labor Costs 203

12.4 Other Fixed Operating Costs 205

12.4.1 Supervision and Labor Overhead 206

12.4.2 Maintenance 206

12.4.3 Local Taxes, Insurance, and Rent 206

12.4.4 Patents and Royalties 206

12.4.5 Interest on Working Capital 206

12.5 Revenue 207

References 208

13 Economic Value Estimation 209

13.1 Simple Metrics 210

13.1.1 Gross Profit and Gross Margin 210

13.1.2 Return on Investment and Simple Payback 210

13.2 Time Value of Money and Discounting 210

13.2.1 Cost of Capital 211

13.2.2 Putting a Value on the Discount Rate 212

13.2.3 Special Case: Annuities 213

13.3 Levelized Cost 213

13.4 Cash Flow Analysis 217

13.4.1 Project Lifetime 220

13.4.2 Investment and Start-up Schedules 220

13.4.3 Income Tax 220

13.4.4 Depreciation 221

13.4.5 Working Capital 223

13.4.6 Financing and Interest 223

13.5 Discounted Metrics 225

13.5.1 Net Present Value 227

13.5.2 Internal Rate of Return 228

13.5.3 Modified Internal Rate of Return 229

13.5.4 Net Present Value Percent 231

13.6 Incremental Analysis 231

References 232

14 The Dashboard 235

14.1 Dashboard Design 235

14.2 Best Practices 237

15 Top-Down Modeling 239

15.1 Top-Down Model Structure 240

15.2 Steps to Building a Top-Down Model 240

16 Model Review and Debugging 245

References 248

17 Conclusion: Working with Uncertainty 249

17.1 Uncertainty in Process Design 249

17.2 Uncertainty in the Model Inputs 251

Part III Techno-Economic Analysis 253

18 Analysis Methods 255

18.1 Cost Distribution Charts 255

18.2 Basic Sensitivity Analyses 257

18.3 Tornado Diagrams 261

18.4 Monte Carlo Method 262

18.5 Scenario Analysis 265

Reference 266

19 Techno-Economic Analysis in Practice 267

19.1 Assessing Potential for Economic Viability 267

19.2 Assessing Risk and Uncertainty 268

19.3 Guiding R&D 272

19.4 Communication 274

Part IV Case Studies 277

20 Bottom-Up Case Study 279

20.1 Process Description 279

20.2 Model Walkthrough 281

20.2.1 Process Modeling 281

20.2.2 Equipment Sizing 283

20.2.3 Equipment Costing 287

20.2.4 Capital Cost Estimation 289

20.2.5 Operating Cost and Revenue Estimation 289

20.2.6 Economic Value Metric Estimation 293

20.2.7 Dashboard 296

20.3 Model Review 296

20.3.1 Process Diagram 296

20.3.2 Dextrose Costs 296

20.3.3 Equipment Costing 298

20.4 Analysis and Discussion 299

References 301

21 Top-Down Case Study 303

21.1 Process Description 303

21.2 Model Walkthrough 305

21.2.1 Process Modeling 305

21.2.2 Capital Cost Estimation 308

21.2.3 Levelized Cost Estimation 309

21.2.4 Dashboard 312

21.3 Model Review: Comparison with Study Results 312

21.4 Analysis and Discussion 318

References 323

Index 000


Chris Burk is a chemical engineer and consultant. He is a leader in the field of techno-economic modeling for tough-tech innovations. Chris has developed models for over 100 technologies, built a library of software tools, and has written and spoken extensively on the subject. He regularly works with startups from the top tough-tech focused organizations in the United States, such as Activate and MIT’s The Engine, as well as many others.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.