Busemann | Recent Synthetic Differential Geometry | Buch | 978-3-642-88059-9 | sack.de

Buch, Englisch, Band 54, 112 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 201 g

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge

Busemann

Recent Synthetic Differential Geometry


Softcover Nachdruck of the original 1. Auflage 1970
ISBN: 978-3-642-88059-9
Verlag: Springer

Buch, Englisch, Band 54, 112 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 201 g

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge

ISBN: 978-3-642-88059-9
Verlag: Springer


A synthetic approach to intrinsic differential geometry in the large and its connections with the foundations of geometry was presented in "The Geometry of Geodesics" (1955, quoted as G). It is the purpose of the present report to bring this theory up to date. Many of the later ip.vestigations were stimulated by problems posed in G, others concern newtopics. Naturally references to G are frequent. However, large parts, in particular Chapters I and III as weIl as several individual seetions, use only the basic definitions. These are repeated here, sometimes in a slightly different form, so as to apply to more general situations. In many cases a quoted result is quite familiar in Riemannian Geometry and consulting G will not be found necessary. There are two exceptions: The theory of paralleIs is used in Sections 13, 15 and 17 without reformulating all definitions and properties (of co-rays and limit spheres). Secondly, many items from the literature in G (pp. 409-412) are used here and it seemed superfluous to include them in the present list of references (pp. 106-110). The quotations are distinguished by [ ] and ( ), so that, for example, FreudenthaI [1] and (I) are found, respectively, in G and here.

Busemann Recent Synthetic Differential Geometry jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


I. Completeness, Finite Dimensionality, Differentiability.- 1. The Theorem of Hopf and Rinow.- 2. Geodesic Completeness. Local Homogeneity.- 3. The Topology of r-Spaces.- 4. Finite-Dimensional G-Spaces.- 5. Differentiability.- II. Desarguesian Spaces.- 6. Similarities.- 7. Imbeddings of Desarguesian Spaces.- 8. A Characterization of Hilbert’s and Minkowski’s Geometries.- III. Length Preserving Maps.- 9. Shrinkages, Equilong Maps, Local Isometries.- 10. Spaces without Proper Local Isometries.- 11. Proper Equilong Maps.- IV. Geodesics.- 12. Closed Hyperbolic Space Forms.- 13. Axes of Motions and Closed Geodesics.- 14. Plane Inverse Problems. Higher Dimensional Collineation Groups.- 15. One-Dimensional and Discrete Collineation Groups.- 16. Bonnet Angles. Quasi-Hyperbolic Geometry.- 17. Various Aspects of Conjugacy.- V. Motions.- 18. Finite and One-Parameter Groups of Motions.- 19. Transitivity on Pairs of Points and on Geodesies.- VI. Observations on Method and Content.- Literature.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.