Buch, Englisch, Band 19, 461 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 709 g
Reihe: Springer INdAM Series
Buch, Englisch, Band 19, 461 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 709 g
Reihe: Springer INdAM Series
ISBN: 978-3-319-86520-1
Verlag: Springer International Publishing
Lie theory is a mathematical framework for encoding the concept of symmetries of a problem, and was the central theme of an INdAM intensive research period at the Centro de Giorgi in Pisa, Italy, in the academic year 2014-2015. This book gathers the key outcomes of this period, addressing topics such as: structure and representation theory of vertex algebras, Lie algebras and superalgebras, as well as hyperplane arrangements with different approaches, ranging from geometry and topology to combinatorics.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Topologie Algebraische Topologie
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik Mathematik Mathematik Allgemein Diskrete Mathematik, Kombinatorik
Weitere Infos & Material
Part I Lecture notes. - 1 Introduction to vertex algebras, Poisson vertex algebras, and integrable Hamiltonian PDE.- 2 An introduction to algebras of chiral differential operators.- 3 Representations of Lie Superalgebras.- 4 Introduction toW-algebras and their representation theory. Part II Contributed papers.- 5 Representations of the framisation of the Temperley–Lieb algebra.- 6 Some semi-direct products with free algebras of symmetric invariants.- 7 On extensions of affine vertex algebras at half-integer levels.- 8 Dirac cohomology in representation theory.- 9 Superconformal Vertex Algebras and Jacobi Forms.- 10 Centralizers of nilpotent elements and related problems.- 11 Pluri-Canonical Models of Supersymmetric Curves.- 12 Report on the Broué-Malle-Rouquier conjectures.- 13 A generalization of the Davis-Januszkiewicz construction.- 14 Restrictions of free arrangements and the division theorem.- 15 The pure braid groups and their relatives.- 16 Homological representations of braid groups and the space of conformal blocks.- 17 Totally nonnegative matrices, quantum matrices and back, via Poisson geometry.