Buch, Englisch, 252 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 368 g
Reihe: Pocket Primer
Buch, Englisch, 252 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 368 g
Reihe: Pocket Primer
ISBN: 978-1-68392-460-9
Verlag: Mercury Learning and Information
As part of the best-selling Pocket Primer series, this book is designed to introduce beginners to basic machine learning algorithms using TensorFlow 2. It is intended to be a fast-paced introduction to various “core” features of TensorFlow, with code samples that cover machine learning and TensorFlow basics. A comprehensive appendix contains some Keras-based code samples and the underpinnings of MLPs, CNNs, RNNs, and LSTMs. The material in the chapters illustrates how to solve a variety of tasks after which you can do further reading to deepen your knowledge. Companion files with all of the code samples are available for downloading from the publisher by emailing proof of purchase to info@merclearning.com. Features:
- Uses Python for code samples
- Covers TensorFlow 2 APIs and Datasets
- Includes a comprehensive appendix that covers Keras and advanced topics such as NLPs, MLPs, RNNs, LSTMs
- Features the companion files with all of the source code examples and figures (download from the publisher)
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
- Mathematik | Informatik EDV | Informatik Informatik
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Enzyklopädien, Nachschlagewerke, Wörterbücher
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
Weitere Infos & Material
1: Introduction to TensorFlow 22: Useful TensorFlow 2 APIs3: TensorFlow 2 Datasets 4: Linear Regression5: Working with ClassifiersAppendix: TF2, Keras, and Advanced Topics Index On the Companion Files:
(available from the publisher for downloading) - Source code samples from the text
- Figures