Canci / Mu / Mekler | Quantitative Models in Life Science Business | Buch | 978-3-031-11813-5 | sack.de

Buch, Englisch, 127 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 224 g

Reihe: SpringerBriefs in Economics

Canci / Mu / Mekler

Quantitative Models in Life Science Business

From Value Creation to Business Processes
1. Auflage 2023
ISBN: 978-3-031-11813-5
Verlag: Springer International Publishing

From Value Creation to Business Processes

Buch, Englisch, 127 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 224 g

Reihe: SpringerBriefs in Economics

ISBN: 978-3-031-11813-5
Verlag: Springer International Publishing


This open access book explores the field of life science business from a multidisciplinary perspective. Applying statistical, mathematical, game-theoretic, and data science tools to pharmaceutical and biotechnology business endeavors, the book describes value creation, value maintenance, and value realization in the life sciences as a sequence of processes using the quantitative language of applied mathematics. Written by experts from a variety of fields, the contributions illustrate the shift from a deterministic to a stochastic view of the processes involved, offering a new perspective on life sciences economics. 

The book covers topics such as valuing and managing intellectual property in life science, licensing in the pharmaceutical business, outsourcing pharmaceutical R&D, and stochastic modelling of a pharmaceutical supply chain. The book will appeal to scholars of economics and the life sciences, as well as to professionals in chemical and pharmaceutical industries. 

Canci / Mu / Mekler Quantitative Models in Life Science Business jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


Part I. Value Creation and Managing Intellectual Property in the Life Science Industry.- Chapter 1. Value Creation, Valuation and Business Models in the Pharmaceutical Sector.- Chapter 2. Alternative Licensing Strategies: A Piecewise Deterministic Di?erential Game.- Chapter 3. Partnership Models for R&D in the Pharmaceutical Industry.- Part II. Modelling Speci?c Business Processes in the Life Science Industry.- Chapter 4. Pharma Tender Processes: Modelling Auction Outcomes.- Chapter 5. Multi-Echelon Inventory Optimization Using Deep Reinforcement Learning.- Part III. Specialized Quantitative Tools in the Life Science Industry.- Chapter 6. Stochastic Di?erential Equations in Healthcare.- Chapter 7. Point Processes with Mixed Doubly Stochastic Poisson and Self-Exciting Flavors: An Excursion Into DALY Computations.


Jung Kyu Canci is a senior lecturer and researcher at the University of Basel and at the Lucerne University of Applied Sciences and Arts in Lucerne, Switzerland. His research is in pure mathematics, number theory, with particular interests in arithmetic of dynamical systems, and in applied mathematics, especially stochastic processes in finance. He is the founder of several companies.
Philipp Mekler is trained in both biochemistry and mathematics; he has 40+ years of experience in the Pharma/Life Science sector in R&D, sales/marketing, business analysis and bio-business finance/venture capital in CH/US/IL. Currently, he is working as a strategic advisor at the Roche Pharma International Data and Analytics chapter in Basel, Switzerland.
Gang Mu is a visiting research scholar at the University of Zurich, Switzerland and former head of Artificial Intelligence for partnership at Roche, Basel. He holds a Ph.D. degree in mathematics and has comprehensive experience in connecting mathematics, health care and technology, driving impacts and outcomes for patients and healthcare systems. He is the founder of Swiss Network for Mathematics in Industry.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.