Cao / Coleman / Hsiai | Interfacing Bioelectronics and Biomedical Sensing | E-Book | www.sack.de
E-Book

E-Book, Englisch, 240 Seiten

Cao / Coleman / Hsiai Interfacing Bioelectronics and Biomedical Sensing


1. Auflage 2020
ISBN: 978-3-030-34467-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 240 Seiten

ISBN: 978-3-030-34467-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book addresses the fundamental challenges underlying bioelectronics and tissue interface for clinical investigation. Appropriate for biomedical engineers and researchers, the authors cover topics ranging from retinal implants to restore vision, implantable circuits for neural implants, and intravascular electrochemical impedance to detect unstable plaques. In addition to these chapters, the authors also document the approaches and issues of multi-scale physiological assessment and monitoring in both humans and animal models for health monitoring and biological investigations; novel biomaterials such as conductive and biodegradable polymers to be used in biomedical devices; and the optimization of wireless power transfer via inductive coupling for batteryless and wireless implantable medical devices. In addition to engineers and researchers, this book is also an ideal supplementary or reference book for a number of courses in biomedical engineering programs, such as bioinstrumentation, MEMS/BioMEMS, bioelectronics and sensors, and more.Analyzes and discusses the electrode-tissue interfaces for optimization of biomedical devices.
Introduces novel biomaterials to be used in next-generation biomedical devices.Discusses high-frequency transducers for biomedical applications.


Hung Cao is Assistant Professor of Electrical Engineering and Biomedical Engineering, University of California, Irvine.
Todd Coleman is Professor of Biomedical Engineering at the University of California, San Diego.
Tzung Hsiai is Professor of Medicine (Cardiology) and Bioengineering at the University of California, Los Angeles.
Ali Khademhosseini is a Professor of Bioengineering and Radiology at the University of California, Los Angeles.

Cao / Coleman / Hsiai Interfacing Bioelectronics and Biomedical Sensing jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Contents;6
3;Challenges in the Design of Large-Scale, High-Density, Wireless Stimulation and Recording Interface;8
3.1;1 Introduction;8
3.2;2 Cancellation of Artifacts During Simultaneous Neural Stimulation and Recording;9
3.2.1;2.1 Stimulation Artifact Cancellation by Circuit Design;10
3.2.2;2.2 Stimulation Artifact Cancellation by Digital Signal Processing;11
3.2.3;2.3 Stimulation Artifact Cancellation by a Complete System Design;12
3.3;3 Focalized Stimulation;14
3.4;4 High-Density Electrode Array;15
3.4.1;4.1 Scaling Trend of Neural Interfaces;15
3.4.2;4.2 Actively Multiplexed, Flexible Electrode Arrays;16
3.4.2.1;4.2.1 Rationale and Concept;16
3.4.2.2;4.2.2 Capacitively Coupled Arrays of Multiplexed Flexible Silicon Transistors for Chronic Electrophysiology;17
3.5;5 Gigabit Wireless Link;20
3.5.1;5.1 Design Consideration;20
3.5.1.1;5.1.1 Bandwidth/Data Rate Requirement;21
3.5.1.2;5.1.2 Power Constraint;22
3.5.1.3;5.1.3 Transmission Distance;23
3.5.2;5.2 State-of-the-Art Gigabit Wireless Telemetry;25
3.5.3;5.3 High-Density Gigabit Wireless Neural Recording System;27
3.6;6 Future Large-Scale, High-Density Wireless Stimulation and Recording System;29
3.6.1;6.1 System Architecture;29
3.6.2;6.2 Outlook;30
3.7;References;31
4;Advances in Bioresorbable Electronics and Uses in Biomedical Sensing;36
4.1;1 Introduction to Bioresorbable Electronics;36
4.1.1;1.1 Motivation and Classification;36
4.1.2;1.2 Background;38
4.2;2 Overview and Advancements of Constituent Resorbable Materials;39
4.2.1;2.1 Conductor;41
4.2.1.1;2.1.1 Inorganic;41
4.2.1.2;2.1.2 Organic;48
4.2.2;2.2 Semiconductor;49
4.2.2.1;2.2.1 Inorganic;49
4.2.2.2;2.2.2 Organic;50
4.2.3;2.3 Insulator: Dielectric;51
4.2.3.1;2.3.1 Inorganic;51
4.2.3.2;2.3.2 Organic;53
4.2.4;2.4 Insulator: Substrate;53
4.2.4.1;2.4.1 Inorganic;53
4.2.4.2;2.4.2 Organic;54
4.2.5;2.5 Insulator: Encapsulation Layer;59
4.2.5.1;2.5.1 Inorganic;59
4.2.5.2;2.5.2 Organic;60
4.3;3 Applications in Biomedical Engineering;61
4.3.1;3.1 Energy Supply;61
4.3.1.1;3.1.1 Batteries;63
4.3.1.2;3.1.2 Mechanical Energy Harvesters;64
4.3.1.3;3.1.3 Microsupercapacitors;65
4.3.2;3.2 Biosensing;66
4.3.2.1;3.2.1 Electrophysiologic Monitoring;66
4.3.2.2;3.2.2 Environmental Sensing;67
4.3.2.3;3.2.3 Elastic Sensors for Electrophysical, Chemical, and Mechanical Sensing;68
4.3.3;3.3 Therapeutics;69
4.3.3.1;3.3.1 Heat-Stimulated Drug Release;69
4.3.3.2;3.3.2 Tissue Regeneration;70
4.3.3.3;3.3.3 Multifunctional Therapies;71
4.4;4 Summary and Outlook;71
4.5;References;72
5;Inorganic Dissolvable Bioelectronics;80
5.1;1 Introduction;80
5.2;2 Materials;81
5.2.1;2.1 Semiconductors;81
5.2.2;2.2 Conductors;82
5.2.3;2.3 Insulators;85
5.3;3 Manufacturing Processes;86
5.4;4 Functional Components and Systems;90
5.4.1;4.1 Power Supply Components;90
5.4.2;4.2 Functional Transformation and Active Control;92
5.4.3;4.3 Biomedical Implants;95
5.5;5 Conclusion and Future Perspective;100
5.6;References;103
6;Wirelessly Powered Medical Implants via Radio Frequency;108
6.1;1 Introduction;108
6.1.1;1.1 Near-Field WPT;109
6.1.2;1.2 Batteryless Direct Stimulation;112
6.1.3;1.3 Battery-Based Stimulation;113
6.1.4;1.4 Remote-Controlled Stimulation;114
6.1.5;1.5 Multi-coil Stimulation;115
6.2;2 Far-Field WPT;117
6.3;3 Midfield WPT;119
6.4;4 Future Directions and Conclusion;121
6.5;References;121
7;Electrocardiogram: Acquisition and Analysis for Biological Investigations and Health Monitoring;124
7.1;1 Introduction;124
7.1.1;1.1 Background;124
7.1.2;1.2 The Studied Animal Model: Zebrafish;125
7.1.3;1.3 Electrocardiogram;126
7.1.4;1.4 The Structure of This Chapter;126
7.2;2 The Nature of Electrocardiogram (ECG);127
7.2.1;2.1 Pacemaker Action Potential;127
7.2.2;2.2 Cardiomyocyte Action Potential;128
7.2.3;2.3 Electrophysiological Pathway of the Cardiac System, the ECG;129
7.3;3 ECG Acquisition Methods;130
7.3.1;3.1 Contact Electrode;130
7.3.1.1;3.1.1 Wet Electrode;130
7.3.1.2;3.1.2 Dry Electrode;132
7.3.2;3.2 Noncontact Electrodes (NCE);133
7.4;4 ECG Acquisition, Processing, and Analysis in Zebrafish;134
7.4.1;4.1 Microelectrode Array (MEA) Membranes;135
7.4.2;4.2 Simple-Yet-Novel Housing for ECG Measurement of Awake Zebrafish;137
7.4.3;4.3 Zebrafish ECG Analysis;138
7.5;5 ECG monitoring in humans;139
7.6;6 Discussion and Outlook;140
7.6.1;6.1 Current Wearable Technology;140
7.6.2;6.2 Connecting Findings in Animal Research with Diagnosis and Prognosis in Humans;141
7.6.3;6.3 The Promise of Artificial Intelligence;142
7.7;7 Conclusion;144
7.8;References;145
8;Flexible Intravascular EIS Sensors for Detecting Metabolically Active Plaque;150
8.1;1 Introduction;150
8.1.1;1.1 Atherosclerosis;150
8.1.2;1.2 Electrochemical Impedance Spectroscopy and Its Relevance to Atherosclerosis;151
8.1.3;1.3 Equivalent Circuit Model for EIS;153
8.2;2 Electrochemical Impedance Spectroscopy Implementation;154
8.2.1;2.1 Four-Point EIS;154
8.2.2;2.2 Concentric Bipolar Electrodes (CBE);155
8.2.3;2.3 CBE for In Vivo Animal Study;158
8.2.4;2.4 Two-Point Symmetric Configuration;160
8.2.5;2.5 3-D EIS Interrogation in NZW Rabbit Model;162
8.3;3 Conclusion and Future Outlook;165
8.4;References;166
9;Epidermal EIT Electrode Arrays for Cardiopulmonary Application and Fatty Liver Infiltration;170
9.1;1 Introduction;170
9.1.1;1.1 Fundamental Principle of EIT;171
9.1.2;1.2 Nonlinear Inverse Problem for EIT Imaging;172
9.1.3;1.3 EIDORS Open-Source Tools;175
9.2;2 EIT for Cardiopulmonary Application;176
9.2.1;2.1 Motivation;176
9.2.2;2.2 EIT in Mechanically Ventilated Patients During Surgery or ICU;177
9.2.3;2.3 EIT for Pulmonary Perfusion;177
9.2.4;2.4 EIT for Acute Respiratory Distress Syndrome (ARDS);178
9.2.5;2.5 EIT in Chronic Obstructive Pulmonary Diseases (COPD);178
9.2.6;2.6 EIT in Cystic Fibrosis (CF);179
9.2.7;2.7 Discussion and Outlook;180
9.3;3 EIT for Liver Fat Infiltration;180
9.3.1;3.1 Motivation;180
9.3.2;3.2 Simulation Study;181
9.3.2.1;3.2.1 Change of Geometric Boundaries;182
9.3.2.2;3.2.2 Change in the Size of the Liver;183
9.3.3;3.3 NZW Rabbit Model;183
9.3.4;3.4 EIT for Clinical Translation;184
9.3.5;3.5 Discussion and Outlook for EIT in Liver Fat Infiltration;186
9.4;4 Conclusion and Future Direction;188
9.5;References;188
10;High-Frequency Ultrasonic Transducers to Uncover Cardiac Dynamics;192
10.1;1 High-Frequency Ultrasonic Transducers;192
10.2;2 Emerging Applications for Small Animal Models;193
10.2.1;2.1 High-Frequency Transducer for Mouse;193
10.2.2;2.2 High-Frequency Transducer for Zebrafish;195
10.3;References;197
11;Minimally Invasive Technologies for Biosensing;200
11.1;1 Introduction;200
11.2;2 Point-of-Care Devices;202
11.3;3 Wearable Biosensors;204
11.4;4 Minimally Invasive Sensing with Wearable Biosensors;206
11.4.1;4.1 Biomarker Sensing;206
11.4.2;4.2 Electrophysiological Sensing;207
11.5;5 Edible Biosensors;208
11.6;6 Microneedle-Based Biosensors;211
11.7;7 Smart Bandages;215
11.8;8 Conclusion and Outlook;220
11.9;References;223
12;Index;231



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.