Buch, Englisch, 392 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 781 g
Reihe: Graduate Texts in Physics
Buch, Englisch, 392 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 781 g
Reihe: Graduate Texts in Physics
ISBN: 978-3-031-04575-2
Verlag: Springer International Publishing
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Statik, Dynamik, Kinetik, Kinematik
- Naturwissenschaften Astronomie Astronomische Beobachtung: Observatorien, Instrumente, Methoden
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Quantenphysik Relativität, Gravitation
Weitere Infos & Material
1 N-body problem 111.1 Self-gravitating systems of massive points . . . . . . . . . . . . . 141.2 Fundamental rst integrals . . . . . . . . . . . . . . . . . . . . . 171.2.1 Conservation of momentum . . . . . . . . . . . . . . . . 181.2.2 Angular momentum conservation . . . . . . . . . . . . . 211.2.3 Energy conservation . . . . . . . . . . . . . . . . . . . . 231.3 Barycentric and relative systems . . . . . . . . . . . . . . . . . . 251.4 N-body problem solution . . . . . . . . . . . . . . . . . . . . . . 261.5 Virial theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 The two-body problem 312.1 Motion about center of mass . . . . . . . . . . . . . . . . . . . . 342.2 Reduction to the plane . . . . . . . . . . . . . . . . . . . . . . . 382.3 E ective potential energy . . . . . . . . . . . . . . . . . . . . . 402.4 The trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422.5 Laplace{Runge{Lenz vector . . . . . . . . . . . . . . . . . . . . 432.6 Geometry of conics . . . . . . . . . . . . . . . . . . . . . . . . . 462.6.1 Ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472.6.2 Parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . 502.6.3 Hyperbola . . . . . . . . . . . . . . . . . . . . . . . . . . 522.7 Conic orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532.7.1 Elliptical orbit . . . . . . . . . . . . . . . . . . . . . . . . 562.7.2 Parabolic orbit . . . . . . . . . . . . . . . . . . . . . . . 612.7.3 Hyperbolic orbit . . . . . . . . . . . . . . . . . . . . . . 622.8 Keplerian elements . . . . . . . . . . . . . . . . . . . . . . . . . 632.9 Ephemerides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652.10 The method of Laplace . . . . . . . . . . . . . . . . . . . . . . . 702.11 Ballistics and space ight . . . . . . . . . . . . . . . . . . . . . . 803 The three-body problem 853.1 Stationary solutions . . . . . . . . . . . . . . . . . . . . . . . . . 873.1.1 Collinear solutions . . . . . . . . . . . . . . . . . . . . . 923.1.2 Triangular solutions . . . . . . . . . . . . . . . . . . . . . 943.2 The restricted problem . . . . . . . . . . . . . . . . . . . . . . . 973.3 Zero{velocity curves . . . . . . . . . . . . . . . . . . . . . . . . 1013.3.1 The (x; y) plane . . . . . . . . . . . . . . . . . . . . . . 1023.3.2 The (x; z) plane . . . . . . . . . . . . . . . . . . . . . . . 1043.3.3 The (y; z) plane . . . . . . . . . . . . . . . . . . . . . . . 1053.4 About the Lagrangian points . . . . . . . . . . . . . . . . . . . . 1073.5 Stability of the Lagrangian points . . . . . . . . . . . . . . . . . 1083.5.1 The equilibrium conditions . . . . . . . . . . . . . . . . . 1083.5.2 Collinear solutions . . . . . . . . . . . . . . . . . . . . . 1103.5.3 Triangular solutions . . . . . . . . . . . . . . . . . . . . . 1113.6 Variation of the elements . . . . . . . . . . . . . . . . . . . . . . 1133.6.1 Variation of the orientation elements . . . . . . . . . . . 1163.6.2 Variation of the geometric elements . . . . . . . . . . . . 1184 Analytical mechanics 1254.1 Lagrange function . . . . . . . . . . . . . . . . . . . . . . . . . . 1274.2 Generalized coordinates . . . . . . . . . . . . . . . . . . . . . . 1294.3 Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . 1314.4 Hamilton function . . . . . . . . . . . . . . . . . . . . . . . . . . 1334.5 Canonical equations . . . . . . . . . . . . . . . . . . . . . . . . . 1374.6 Constants of motion . . . . . . . . . . . . . . . . . . . . . . . . 1384.7 Elliptical orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1404.8 Canonical transformations . . . . . . . . . . . . . . . . . . . . . 1504.8.1 Characteristic function . . . . . . . . . . . . . . . . . . . 1514.8.2 Forms of the characteristic function . . . . . . . . . . . . 1544.8.3 Canonicity conditions . . . . . . . . . . . . . . . . . . . . 1554.8.4 Canonical invariants . . . . . . . . . . . . . . . . . . . . 1614.8.5 In nitesimal canonical transformations . . . . . . . . . . 1634.8.6 Canonical systems of motion constants . . . . . . . . . . 1684.8.7 Canonical elements for elliptical orbit . . . . . . . . . . . 1754.9 Jacobi equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1794.9.1 Jacobi equation: special cases . . . . . . . . . . . . . . . 1824.9.2 2{body problem with Hamilton{Jacoby . . . . . . . . . . 1864.10 Element variation . . . . . . . . . . . . . . . . . . . . . . . . . . 1914.10.1 Constant variation method: an example . . . . . . . . . 1944.11 Apsidal precession . . . . . . . . . . . . . . . . . . . . . . . . . 1974.12 Orbits in General Relativity . . . . . . . . . . . . . . . . . . . . 2005 Gravitational potential 2075.1 Gauss theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 2085.2 Theorens of Poisson and Laplace . . . . . . . . . . . . . . . . . 2105.3 Potential of a massive point . . . . . . . . . . . . . . . . . . . . 2125.4 Spherical bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . 2155.5 Legendre equation . . . . . . . . . . . . . . . . . . . . . . . . . 2215.5.1 Spherical harmonics . . . . . . . . . . . . . . . . . . . . 2215.5.2 Legendre equation and spherical harmonics . . . . . . . . 2235.5.3 Associated Legendre function . . . . . . . . . . . . . . . 2255.5.4 Spherical harmonics of integer degree . . . . . . . . . . . 2275.6 Expansion of the potential . . . . . . . . . . . . . . . . . . . . . 2305.7 Thin layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2335.8 Homogeneous spheroid . . . . . . . . . . . . . . . . . . . . . . . 2355.9 Potential of a homogeneus ellipsoid . . . . . . . . . . . . . . . . 2385.10 Ellipsoid: outer point potential . . . . . . . . . . . . . . . . . . 2425.11 Potential: explicit form . . . . . . . . . . . . . . . . . . . . . . . 2445.12 Earth distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . 2475.13 Potential with dominating body . . . . . . . . . . . . . . . . . . 2495.14 Torus potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 251A Spherical trigonometry elements 261B Transformation formulas 267C Vector operators 271D The mirror theorem 275E Kepler's equation 277E.1 Lagrange's theorem . . . . . . . . . . . . . . . . . . . . . . . . . 277E.2 Fourier's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 279E.3 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . 280F Hydrogen atom 283F.1 Bohr's atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284F.2 Quantum approach . . . . . . . . . . . . . . . . . . . . . . . . . 285G Variation of constants 287H Lagrange multipliers 291H.1 Variation of constants . . . . . . . . . . . . . . . . . . . . . . . 292I Visual binary orbits 295J Three bodies: planarity 301K Gravitational impact 305L Poisson and Lagrange brackets 309L.1 Poisson brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . 309L.2 Lagrange brackets . . . . . . . . . . . . . . . . . . . . . . . . . . 311L.3 Brackets of Poisson and Lagrange . . . . . . . . . . . . . . . . . 313M Special functions 315M.1 Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . 315M.2 Beta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317M.3 Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 319M.3.1 First kind Bessel functions . . . . . . . . . . . . . . . . . 319M.3.2 Second kind Bessel functions . . . . . . . . . . . . . . . . 323M.3.3 Hankel functions . . . . . . . . . . . . . . . . . . . . . . 324M.3.4 Modi ed Bessel functions . . . . . . . . . . . . . . . . . 324M.3.5 Spherical Bessel functions . . . . . . . . . . . . . . . . . 325M.4 Hypergeometric function . . . . . . . . . . . . . . . . . . . . . . 327M.5 Error function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329N Orthogonal functions 331N.1 Least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331N.2 Orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . 334N.3 Legendre polynomials . . . . . . . . . . . . . . . . . . . . . . . . 335N.4 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . 343N.5 Application of spherical harmonics . . . . . . . . . . . . . . . . 348N.6 Hermite polynomials . . . . . . . . . . . . . . . . . . . . . . . . 350N.7 Application of Hermite polynomials . . . . . . . . . . . . . . . . 352N.8 Laguerre polynomials . . . . . . . . . . . . . . . . . . . . . . . . 352N.9 Chebyshev polynomials . . . . . . . . . . . . . . . . . . . . . . . 355O Harmonic functions 357O.1 Special problems . . . . . . . . . . . . . . . . . . . . . . . . . . 361P Principles of mechanics 363P.1 Variational formulation of motion . . . . . . . . . . . . . . . . . 363P.2 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . 365P.3 Maupertuis's principle . . . . . . . . . . . . . . . . . . . . . . . 368P.4 Geodesic lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369Q Invariance and conservation 373Q.1 Continuous trajectories . . . . . . . . . . . . . . . . . . . . . . . 373Q.2 Time-invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . 375Q.3 Invariance to translations . . . . . . . . . . . . . . . . . . . . . . 375Q.4 Rotational invariance . . . . . . . . . . . . . . . . . . . . . . . . 376R Numerical methods 377R.1 The Euler method . . . . . . . . . . . . . . . . . . . . . . . . . 377R.2 Implicit Runge-Kutta method . . . . . . . . . . . . . . . . . . . 378R.3 Runge-Kutta fourth-order method . . . . . . . . . . . . . . . . . 379




