E-Book, Englisch, Band 121, 386 Seiten
Carlsson / Kardomateas Structural and Failure Mechanics of Sandwich Composites
1. Auflage 2011
ISBN: 978-1-4020-3225-7
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 121, 386 Seiten
Reihe: Solid Mechanics and Its Applications
ISBN: 978-1-4020-3225-7
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
'Structural and Failure Mechanics of Sandwich Composites' by Leif A. Carlsson and George A. Kardomateas focuses on some important deformation and failure modes of sandwich panels such as global buckling, wrinkling and local instabilities, and face/core debonding. The book also provides the mechanics background necessary for understanding deformation and failure mechanisms in sandwich panels and the response of sandwich structural parts to a variety of loadings. Specifically, first-order and high-order sandwich panel theories, and three-dimensional elasticity solutions for the structural behavior outlined in some detail. Elasticity analysis can serve as a benchmark for judging the accuracy of simplified sandwich plate, shell and beam theories. Furthermore, the book reviews test methods developed for the characterization of the constituent face and core materials, and sandwich beams and plates. The characterization of face/core debonding is a major topic of this text, and analysis methods based on fracture mechanics are described and applied to several contemporary test specimens. Test methods and results documented in the literature are included and discussed. The book will benefit structural and materials engineers and researchers with the desire to learn more about structural behavior, failure mechanisms, fracture mechanics and damage tolerance of sandwich structures.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;Preface;12
3;Chapter 1 Introduction;16
3.1;1.1 Bending Stiffness of a Sandwich Beam;17
3.2;1.2 Stresses in the Face Sheets and Core;22
3.3;1.3 Local Failures;25
3.4;1.4 Face and Core Materials;28
4;Chapter 2 Characterization of the Mechanical Properties of Face Sheet and Core Materials;33
4.1;2.1 Face Mechanical Properties;33
4.1.1;2.1.1 Isotropic Face Sheets;33
4.1.2;2.1.2 Composite Face Sheets;35
4.1.2.1;Tension Test Procedures;37
4.1.2.2;Compression Test Procedures;38
4.1.2.3;Shear Test Procedures;40
4.2;2.2 Core Mechanical Properties;44
4.2.1;2.2.1 Tension Test Procedures;45
4.2.2;2.2.2 Compression Testing;46
4.2.3;2.2.3 Shear Testing;48
5;Chapter 3 Classical and First-Order Shear Deformation Analysis of Sandwich Plates;52
5.1;3.1 Classical Laminated Plate Theory Analysis;52
5.1.1;3.1.1 Laminate Nomenclature;53
5.1.2;3.1.2 Kinematics of Deformation;54
5.1.3;3.1.3 Stresses in the Laminate;59
5.1.4;3.1.4 Force and Moment Resultants;61
5.1.5;3.1.5 Effective Engineering Elastic Constants of Laminates;63
5.2;3.2 First-Order Shear Deformation Analysis of a Sandwich Plate;65
5.2.1;3.2.1 Alternative Form of the Constitutive Equations for a Sandwich Plate Element;74
5.2.2;3.2.2 Equilibrium Equations;75
5.2.3;3.2.3 Boundary Conditions for a Rectangular Panel;76
5.2.3.1;Simply-Supported;76
5.2.3.2;Hinged-Free Perpendicular to the Edge;77
5.2.3.3;Hinged-Free Parallel to the Edge;77
5.2.3.4;Clamped;77
5.2.3.5;Free Edge;78
5.3;3.3 Analysis of a Transversely Loaded Sandwich Plate;78
5.4;3.4 Analysis of Sandwich Plate Twist Test;84
5.4.1;3.4.1 Classical Laminated Plate Theory Analysis;85
5.4.2;3.4.2 Finite Element Analysis;88
5.5;3.5 Testing of Sandwich Panels;89
5.5.1;3.5.1 Pressure Loading of a Sandwich Plate;89
5.5.1.1;Test Results;92
5.5.2;3.5.2 Plate Twist Testing;92
6;Chapter 4 First-Order Shear Analysis of Sandwich Beams;97
6.1;4.1 Analysis of Sandwich Beams;97
6.2;4.2 Three-Point Flexure Loading of a Sandwich Beam;99
6.3;4.3 Simplified Analysis of Bending Stiffness of Sandwich Beams;102
6.3.1;4.3.1 Bending without Axial Force;104
6.4;4.4 Three-Point Flexure Testing of Sandwich Beams;106
6.4.1;4.4.1 Evaluation of Flexural and Shear Stiffnesses;106
6.4.1.1;Example;109
6.4.2;4.4.2 Evaluation of Core Shear Strength and Face Compression Strength;111
7;Chapter 5 Elasticity Solutions for Sandwich Structures;114
7.1;5.1 A Rectangular Sandwich Plate with Orthotropic Face Sheets and Core;114
7.1.1;5.1.1 Negative Discriminant D;118
7.1.2;5.1.2 Positive Discriminant D;122
7.1.3;5.1.3 Isotropic Layers;128
7.1.4;5.1.4 Examples;132
7.2;5.2 A Cylindrical Sandwich Shell with Orthotropic Layers;138
7.2.1;5.2.1 Generalized Plane Deformation of an Orthotropic Sandwich Tube Subjected to Internal and/or External Pressures;142
7.2.2;5.2.2 An Orthotropic Hollow Sandwich Cylinder Loaded by an Axial Force;144
7.2.3;5.2.3 Sandwich Shell Theory Expressions;146
7.2.4;5.2.4 Torsion of a Sandwich Shaft;149
8;Chapter 6 High-Order Sandwich Panel Theories;152
8.1;6.1 Basic Assumptions;152
8.2;6.2 The “High-Order Sandwich Panel Theory” (HSAPT);154
8.3;6.3 The “Extended High-Order Sandwich Panel Theory” (EHSAPT);156
8.4;6.4 Application to a Simply Supported Sandwich Beam;166
8.5;6.5 Other High-Order Sandwich Panel Theories;172
9;Chapter 7 Global Buckling of Sandwich Columns and Wide Panels;175
9.1;7.1 The Engesser Approach;175
9.2;7.2 The Haringx Approach;178
9.3;7.3 Allen’s Formulas;179
9.3.1;7.3.1 Thin Faces;179
9.3.2;7.3.2 Thick Faces;181
9.4;7.4 Bazant and Cedolin’s Formula;184
9.5;7.5 Huang and Kardomateas Shear Correction Formulas;186
9.6;7.6 Comparison of the Global Buckling Formulas;188
9.7;7.7 First-Order Shear Deformation Analysis of Buckling of a Simply-Supported Sandwich Panel;190
9.8;7.8 Panel Compression Testing;195
9.8.1;7.8.1 Experimental Determination of the Buckling Load of Panels;203
9.8.2;7.8.2 Analysis of Collapse Load;207
10;Chapter 8 Wrinkling and Local Instabilities;215
10.1;8.1 Wrinkling;215
10.1.1;8.1.1 Hoff and Mautner’s Formulas;216
10.1.2;8.1.2 Plantema’s Formula;225
10.1.3;8.1.3 Allen’s Formula;227
10.1.4;8.1.4 The Winkler Elastic Foundation Approach;230
10.1.5;8.1.5 Example and Comparison of the Wrinkling Formulas;232
10.2;8.2 Intracell Buckling in Honeycomb Core Sandwich Structures;234
10.2.1;8.2.1 The Norris Formula;234
10.2.2;8.2.2 The Fokker Dimpling Formula;237
11;Chapter 9 Fracture Mechanics Analysis of Face/Core Debonds;240
11.1;9.1 Linear Elastic Fracture Mechanics Concepts;241
11.1.1;9.1.1 Finite Element Crack Closure Method;247
11.2;9.2 Crack Kinking Analysis;249
11.2.1;9.2.1 Crack Path in Foam-Cored DCB Specimens;253
11.3;9.3 Cohesive Zone Models of Face/Core Interface Failure;258
11.4;9.4 An Expression for the Energy Release Rate of Face/Core Debonds in Sandwich Beams;265
12;Chapter 10 Analysis of Debond Fracture Specimens;272
12.1;10.1 Introduction;272
12.2;10.2 Debond Test Specimens;274
12.3;10.3 Double Cantilever Beam (DCB) Specimen;275
12.3.1;10.3.1 Crack Kinking Analysis;280
12.4;10.4 Tilted Sandwich Debond (TSD) Specimen;283
12.4.1;10.4.1 Mode Mixity Analysis;286
12.5;10.5 Cracked Sandwich Beam (CSB) Specimen;287
12.6;10.6 Single Cantilever Beam (SCB) Specimen;291
12.7;10.7 Three-Point Sandwich Beam (TPSB) Specimen;291
12.8;10.8 Mixed Mode Bending (MMB) Specimen;293
12.8.1;10.8.1 Analytical and Finite Element Results;297
12.9;10.9 Double Cantilever Beam-Uneven Bending Moments (DCB-UBM) Specimen;299
13;Chapter 11 Debond Fracture Testing;303
13.1;11.1 Double Cantilever Beam (DCB) Specimen Testing;303
13.2;11.2 Tilted Sandwich Debond (TSD) Specimen Testing;311
13.3;11.3 Cracked Sandwich Beam (CSB) Specimen Testing;316
13.4;11.4 Single Cantilever Beam (SCB) Specimen Testing;321
13.5;11.5 Three-Point Sandwich Beam (TPSB) Specimen Testing;326
13.6;11.6 Mixed Mode Bending (MMB) Specimen Testing;329
13.7;11.7 Double Cantilever Beam-Uneven Bending Moments (DCB-UMB) Specimen Testing;330
13.7.1;11.7.1 Double Cantilever Beam-Uneven Bending Moments (DCB-UBM ) Specimen Test Results;333
14;Chapter 12 Face/Core Debond Buckling and Growth;338
14.1;12.1 Introduction;338
14.2;12.2 Buckling of a Face/Core Debond in a Wide Plate/Beam;339
14.2.1;12.2.1 Asymptotic Expansion;343
14.2.2;12.2.2 Pre-Buckling State, O(.0);344
14.2.3;12.2.3 Buckling (First-Order) Equations, O(.1);345
14.3;12.3 Intitial Post-Buckling Behavior of a Face/Core Debond in a Wide Plate/Beam;347
14.3.1;12.3.1 Second-Order Equations, O(.2);347
14.3.2;12.3.2 Third-Order Equations, O(.3);350
14.3.3;12.3.3 Deflections;354
14.4;12.4 Experimental Studies on Buckling and Growth of Face/Core Debonds;356
14.4.1;12.4.1 Column Testing;356
14.4.2;12.4.2 Panel Testing;363
15;Appendix A Stress-Strain Relations for On-Axis and Off-Axis Composite Elements;372
15.1;A.1 On-Axis System;372
15.2;A.2 Off-Axis System;374
16;Appendix B Calculation of Compliance Matrices for Sandwich Panels;376
17;Appendix C Southwell Method;378
18;References;381
19;Subject Index;391




