Carrillo-de-Albornoz / Ferro / García Seco de Herrera | Experimental IR Meets Multilinguality, Multimodality, and Interaction | Buch | 978-3-032-04353-5 | www.sack.de

Buch, Englisch, 511 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 803 g

Reihe: Lecture Notes in Computer Science

Carrillo-de-Albornoz / Ferro / García Seco de Herrera

Experimental IR Meets Multilinguality, Multimodality, and Interaction

16th International Conference of the CLEF Association, CLEF 2025, Madrid, Spain, September 9-12, 2025, Proceedings
Erscheinungsjahr 2025
ISBN: 978-3-032-04353-5
Verlag: Springer

16th International Conference of the CLEF Association, CLEF 2025, Madrid, Spain, September 9-12, 2025, Proceedings

Buch, Englisch, 511 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 803 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-032-04353-5
Verlag: Springer


This volume constitutes the proceedings of the 16th International Conference of the CLEF Association on Experimental IR Meets Multilinguality, Multimodality, and Interaction, CLEF 2025, held in Madrid, Spain, during September 9–12, 2025.

The 25 full papers included in this book were carefully reviewed and selected from 33 submissions. They were organized in the following sections: Conference Papers; Best of CLEF 2024 Labs; and Condensed Labs Overviews.

Carrillo-de-Albornoz / Ferro / García Seco de Herrera Experimental IR Meets Multilinguality, Multimodality, and Interaction jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Conference Papers.

.-From Uniform to Unique: Adaptive K–12 Assessment Using Large
Language Models.

.- Spatially Grounded Explanations in Vision–Language Models for
Document Visual Question Answering.

.- Better Call Claude: Can LLMs Detect Changes of Writing Style?.

.- MedAID-ML: A Multilingual Dataset of Biomedical Texts for Detecting
AI-Generated Content.

.- Taxonomy Generation for Scientific Concepts Using Large Language
Models.

.- Best of CLEF 2024 Labs.

.- Robustness of Misinformation Classification Systems to Adversarial
Examples Through BeamAttack.

.- Simplified Longitudinal Retrieval Experiments: A Case Study on Query
Rewriting and Document Boosting.

.- SimpleText Best of Labs in CLEF-2024: Application of Large Language
Models for Scientific Text Simplification.

.- Language-based Mixture of Transformers for Sexism Identification in
Social Networks.

.- Humour Classification According to Genre and Technique by
Fine-tuning LLMs.

.- Condensed Labs Overviews.

.- Overview of BioASQ 2025: The Thirteenth BioASQ Challenge on
Large-Scale Biomedical Semantic Indexing and Question Answering.

.- Overview of the CLEF-2025 CheckThat! Lab: Subjectivity,
Fact-Checking, Claim Normalization, and Retrieva.

.- Overview of ELOQUENT 2025: Shared Tasks for Evaluating Generative
Language Model Quality.

.- Overview of eRisk 2025: Early Risk Prediction on the Internet.

.- Overview of EXIST 2025: Learning with Disagreement for Sexism
Identification and Characterization in Tweets, Memes, and TikTok Videos.

.- Overview of ImageCLEF 2025: Multimedia Retrieval in Medical, Social
Media and Content Recommendation Applications.

.- Overview of the CLEF 2025 JOKER Lab: Humour in Machine.

.- Overview of LifeCLEF 2025: Challenges on Species Presence Prediction
and Identification, and Individual Animal Identification.

.- LongEval at CLEF 2025: Longitudinal Evaluation of IR Systems on
Web and Scientific Data.

.- Overview of PAN 2025: Voight-Kampff Generative AI Detection,
Multilingual Text Detoxification, Multi-Author Writing Style Analysis,
and Generative Plagiarism Detection.

.- Overview of QuantumCLEF 2025: The Second Quantum Computing
Challenge for Information Retrieval and Recommender Systems at CLEF.

.- Overview of the CLEF 2025 SimpleText Track: Simplify Scientific
Texts (and Nothing More).

.- Overview of the TalentCLEF 2025: Skill and Job Title Intelligence for
Human Capital Management.

.- Overview of Touch´e 2025: Argumentation Systems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.