Carrozza / Micera / Pons | Wearable Robotics: Challenges and Trends | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 22, 542 Seiten

Reihe: Biosystems & Biorobotics

Carrozza / Micera / Pons Wearable Robotics: Challenges and Trends

Proceedings of the 4th International Symposium on Wearable Robotics, WeRob2018, October 16-20, 2018, Pisa, Italy
1. Auflage 2018
ISBN: 978-3-030-01887-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the 4th International Symposium on Wearable Robotics, WeRob2018, October 16-20, 2018, Pisa, Italy

E-Book, Englisch, Band 22, 542 Seiten

Reihe: Biosystems & Biorobotics

ISBN: 978-3-030-01887-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The book reports on advanced topics in the areas of wearable robotics research and practice. It focuses on new technologies, including neural interfaces, soft wearable robots, sensors and actuators technologies, and discusses important regulatory challenges, as well as clinical and ethical issues. Based on the 4th International Symposium on Wearable Robotics, WeRob2018, held October 16-20, 2018, in Pisa, Italy, the book addresses a large audience of academics and professionals working in government, industry, and medical centers, and end-users alike. It provides them with specialized information and with a source of inspiration for new ideas and collaborations. It discusses exemplary case studies highlighting practical challenges related to the implementation of wearable robots in a number of fields. One of the focus is on clinical applications, which was encouraged by the colocation of WeRob2018 with the International Conference on Neurorehabilitation, INCR2018. Additional topics include space applications and assistive technologies in the industry. The book merges together the engineering, medical, ethical and political perspectives, thus offering a multidisciplinary, timely snapshot of the field of wearable technologies. 

Carrozza / Micera / Pons Wearable Robotics: Challenges and Trends jetzt bestellen!

Weitere Infos & Material


1;Contents;6
2;Wearable Sensors for RoboticExoskeletons;18
3;Position Sensing and Control with FMG Sensors for Exoskeleton Physical Assistance;19
3.1;Abstract;19
3.2;1 Introduction;19
3.3;2 FMG Sensor;20
3.4;3 Elbow Exoskeleton Design;20
3.5;4 SVM Implementation;20
3.5.1;4.1 Hardware Setup;20
3.5.2;4.2 Real-Time Estimation;21
3.6;5 Experiments and Results;21
3.6.1;5.1 Joint Angle Estimation;21
3.6.2;5.2 E-EXO Control;21
3.7;6 Conclusion;22
3.8;Acknowledgment;23
3.9;References;23
4;Force Localization Estimation Using a Designed Soft Tactile Sensor;24
4.1;Abstract;24
4.2;1 Introduction;24
4.3;2 Sensor Description and Test Setup;25
4.4;3 Force Localization Estimation;26
4.4.1;3.1 Data Gathering;26
4.4.2;3.2 Learning Algorithm;26
4.4.3;3.3 Estimation Results;27
4.5;4 Conclusion;27
4.6;References;28
5;EIT-Based Tactile Sensing Patches for Rehabilitation and Human Machine Interaction;29
5.1;1 Introduction;29
5.2;2 Materials and Methods;30
5.3;3 Results;31
5.4;4 Conclusions;32
5.5;References;32
6;Synthesis and Optimization Considerations for a Knee Orthosis Based on a Watt’s Six-Bar Linkage;34
6.1;Abstract;34
6.2;1 Introduction;34
6.3;2 Synthesis of the Basic Linkage;35
6.3.1;2.1 Grashof Condition and Geometry;36
6.4;3 Design and Optimization Considerations;36
6.4.1;3.1 Kinematic and Dynamic Optimization;36
6.5;4 Conclusion and Future Work;37
6.6;References;38
7;Wearable Sensory Apparatus Performance While Using Inertial Measurement Units;39
7.1;1 Introduction;39
7.2;2 Materials and Methods;40
7.2.1;2.1 Wearable Sensory Apparatus;40
7.2.2;2.2 Transfer Protocol of Sensors Signals;40
7.2.3;2.3 Background of Intention Detection Algorithms;41
7.3;3 Results;41
7.4;4 Discussion and Conclusion;42
7.5;References;43
8;WeFiTS: Wearable Fingertip Tactile Sensor;44
8.1;1 Introduction;44
8.2;2 Problem Definition;45
8.3;3 Materials and Methods;45
8.3.1;3.1 Design Criteria;46
8.3.2;3.2 Electromechanical Design of WeFiTS;46
8.4;4 Conclusion;48
8.5;References;48
9;Soft Wearable Robots;49
10;Characterisation of Pressure Distribution at the Interface of a Soft Exosuit: Towards a More Comfortable Wear;50
10.1;1 Introduction;50
10.2;2 Methods;52
10.3;3 Results and Conclusions;53
10.4;References;53
11;Realizing Soft High Torque Actuators for Complete Assistance Wearable Robots;54
11.1;1 Introduction;54
11.2;2 Pleated Pneumatic Interference Actuator for Knee Extension;55
11.2.1;2.1 Pleated Pneumatic Interference Actuator Orthosis;56
11.3;3 Results and Discussion;57
11.4;4 Conclusions and Future Work;57
11.5;References;58
12;Application of a User-Centered Design Approach to the Development of XoSoft – A Lower Body Soft Exoskeleton;59
12.1;Abstract;59
12.2;1 Introduction;59
12.3;2 User-Centered Design of XoSoft;60
12.3.1;2.1 User-Centered Design Principles;60
12.3.2;2.2 XoSoft Design Process and Methods;60
12.4;3 Practical Benefits and Challenges Encountered;62
12.4.1;3.1 Benefits of Implementing UCD to XoSoft;62
12.4.2;3.2 Challenges of Implementing UCD to XoSoft;62
12.5;4 Conclusion;62
12.6;Acknowledgment;62
12.7;References;63
13;Preliminary Experimental Study on Variable Stiffness Structures Based on Textile Jamming for Wearable Robotics;64
13.1;Abstract;64
13.2;1 Introduction;64
13.3;2 Textile Jamming;65
13.3.1;2.1 Concept;65
13.3.2;2.2 Prototyping and Experiments;65
13.4;3 Conclusions;67
13.5;References;67
14;Towards Embroidered Sensing Technologies for a Lower Limb Soft Exoskeleton;68
14.1;Abstract;68
14.2;1 Introduction;68
14.3;2 Materials and Methods;69
14.3.1;2.1 Embroidered Knee Sensor;69
14.4;3 Results;70
14.5;4 Conclusions;71
14.6;References;71
15;Recent Results from Evaluation of Soft Wearable Robots in Clinical Populations;73
15.1;Abstract;73
15.2;1 Introduction;73
15.3;2 Restoring Poststroke Gait;73
15.4;3 Restoring Grasp After Spinal Cord Injury;75
15.5;Acknowledgment;77
15.6;References;77
16;Subject-Centered Based Approaches for Controlling Wearable Robots;78
17;Toward an Affordable Multi-Modal Motion Capture System Framework for Human Kinematics and Kinetics Assessment;79
17.1;1 Introduction;79
17.2;2 Method;81
17.2.1;2.1 Mechanical Model;81
17.2.2;2.2 Measurement System;81
17.3;3 Experimental Validation;82
17.4;4 Conclusion;82
17.5;References;83
18;High Power Series Elastic Actuator Development for Torque-Controlled Exoskeletons;84
18.1;1 Introduction;84
18.2;2 Methods;85
18.2.1;2.1 Hardware Design;85
18.2.2;2.2 Torque Control;87
18.3;3 Discussion;88
18.4;References;88
19;Investigation on Variable Impedance Control for Modulating Assistance in Walking Strategies with the AUTONOMYO Exoskeleton;89
19.1;Abstract;89
19.2;1 Introduction;89
19.3;2 Materials and Methods;90
19.3.1;2.1 Exoskeleton AUTONOMYO;91
19.3.2;2.2 3-Phases Variable Impedance Controller;91
19.3.3;2.3 Method;92
19.4;3 Results;92
19.5;4 Discussion;92
19.6;5 Conclusion;93
19.7;References;93
20;Improving Usability of Rehabilitation Robots: Hand Module Evaluation of the ARMin Exoskeleton;94
20.1;1 Introduction;94
20.1.1;1.1 Usability of Rehabilitation Robots;94
20.1.2;1.2 Usability of Hand Modules for Rehabilitation;95
20.2;2 Methods;95
20.2.1;2.1 Patient Set-Up in the ARMin Rehabilitation Robot;95
20.2.2;2.2 Requirements for an Ideal ARMin Hand Module;96
20.3;3 Results;96
20.4;4 Discussion;97
20.5;5 Conclusion;97
20.6;References;98
21;Lower Limb Exoskeletons, from Specifications to Design;99
21.1;1 Introduction;99
21.2;2 Robotic Solutions for Rehabilitation;99
21.3;3 Presentation Outline;100
21.4;References;100
22;Robotic and Neuroprosthetic Balance Management Approaches for Walking Assistance;102
23;Novel Perturbation-Based Approaches Using Pelvis Exoskeleton Robot in Gait and Balance Training After Stroke;103
23.1;Abstract;103
23.2;1 Introduction;103
23.3;2 Methodology and Results;104
23.4;3 Conclusion;106
23.5;References;107
24;Balance During Bodyweight Supported and Robot-Assisted Walking;108
24.1;Abstract;108
24.2;1 Introduction;108
24.3;2 Materials and Methods;109
24.3.1;2.1 Participants;109
24.3.2;2.2 Materials and Methods;110
24.4;3 Results;110
24.5;4 Discussion and Conclusion;110
24.6;Acknowledgment;111
24.7;References;111
25;Maintaining Gait Balance After Perturbations to the Leg: Kinematic and Electromyographic Patterns;112
25.1;Abstract;112
25.2;1 Introduction;112
25.3;2 Methods;113
25.3.1;2.1 Experimental Setup;113
25.3.2;2.2 Data Analysis;113
25.4;3 Results and Discussion;114
25.5;4 Conclusion;115
25.6;Acknowledgment;116
25.7;References;116
26;A New Sensory Feedback System for Lower-Limb Amputees: Assessment of Discrete Vibrotactile Stimuli Perception During Walking;117
26.1;Abstract;117
26.2;1 Introduction;117
26.3;2 Materials and Methods;118
26.3.1;2.1 Experimental Setup;118
26.3.2;2.2 Experimental Protocol;119
26.3.3;2.3 Data Analysis;119
26.4;3 Results and Discussion;120
26.5;References;121
27;Fast Online Decoding of Motor Tasks with Single sEMG Electrode in Lower Limb Amputees;122
27.1;Abstract;122
27.2;1 Introduction;123
27.3;2 Methods;123
27.4;3 Results;124
27.5;4 Discussion;125
27.6;5 Conclusion;125
27.7;References;125
28;A Wearable Haptic Feedback System for Assisting Lower-Limb Amputees in Multiple Locomotion Tasks;127
28.1;Abstract;127
28.2;1 Introduction;127
28.3;2 Materials and Methods;128
28.3.1;2.1 System Setup;128
28.3.2;2.2 Experimental Protocol;128
28.3.3;2.3 Vibrotactile Stimulation Strategies;129
28.4;3 Results;130
28.5;4 Conclusion;130
28.6;References;131
29;Benchmarking Wearable Robots;132
30;COVR – Towards Simplified Evaluation and Validation of Collaborative Robotics Applications Across a Wide Range of Domains Based on Robot Safety Skills;133
30.1;Abstract;133
30.2;1 Introduction;133
30.3;2 Materials and Methods;134
30.3.1;2.1 Toolkit;134
30.3.2;2.2 Testing Protocols;134
30.3.3;2.3 Shared Safety Facilities;135
30.3.4;2.4 Realistic Trials/Financial Support for Third Parties;135
30.4;3 (Expected) Results;135
30.5;4 Discussion;136
30.6;5 Conclusions;136
30.7;References;136
31;Monitoring Upper Limbs During Exoskeleton-Assisted Gait Outdoors;137
31.1;Abstract;137
31.2;1 Introduction;137
31.3;2 Materials and Methods;138
31.4;3 Results;138
31.5;4 Discussion;139
31.6;5 Conclusion;140
31.7;Acknowledgment;140
31.8;References;140
32;What Do People Expect from Benchmarking of Bipedal Robots? Preliminary Results of the EUROBENCH Survey;142
32.1;Abstract;142
32.2;1 Introduction;142
32.3;2 Objectives and Structure of the Survey;143
32.4;3 Preliminary Results;143
32.5;4 Discussions and Conclusions;145
32.6;References;146
33;Modeling Human-Exoskeleton Interaction: Preliminary Results;147
33.1;Abstract;147
33.2;1 Introduction;147
33.3;2 Material and Methods;148
33.3.1;2.1 Interaction model;148
33.3.2;2.2 Equations;148
33.4;3 Results;149
33.5;4 Discussion;150
33.6;5 Conclusion;150
33.7;References;151
34;Human-in-the-Loop Bayesian Optimization of a Tethered Soft Exosuit for Assisting Hip Extension;152
34.1;Abstract;152
34.2;1 Introduction;152
34.3;2 Materials and Methods;153
34.4;3 Results;155
34.5;4 Discussion;155
34.6;Acknowledgment;155
34.7;References;155
35;A Review of Performance Metrics for Lower Limb Wearable Robots: Preliminary Results;157
35.1;Abstract;157
35.2;1 Introduction;157
35.3;2 Materials and Methods;158
35.4;3 Results;160
35.5;4 Discussion;160
35.6;5 Conclusions and Future Work;160
35.7;References;161
36;Flexible and Transparent Technologies for Innovative Wearable Robotics;162
37;Development of Polymer Optical Fiber Sensors for Lower Limb Exoskeletons Instrumentation;163
37.1;Abstract;163
37.2;1 Introduction;163
37.3;2 Material and Methods;164
37.4;3 Results and Discussion;165
37.5;4 Conclusion;166
37.6;References;167
38;T-FLEX: Variable Stiffness Ankle-Foot Orthosis for Gait Assistance;168
38.1;1 Introduction;168
38.2;2 Methods;169
38.3;3 Results;170
38.4;4 Discussion;170
38.5;5 Conclusion;171
38.6;References;172
39;A Series Elastic Dual-Motor Actuator Concept for Wearable Robotics;173
39.1;1 Introduction;173
39.2;2 Series Elastic Dual-Motor Actuator;174
39.3;3 Methods;174
39.3.1;3.1 Equations;174
39.3.2;3.2 Optimization;176
39.4;4 Results and Discussion;176
39.5;5 Conclusion and Future Work;177
39.6;References;177
40;Towards Design Guidelines for Physical Interfaces on Industrial Exoskeletons: Overview on Evaluation Metrics;178
40.1;1 Introduction;178
40.2;2 State of the Art;179
40.2.1;2.1 Design;179
40.2.2;2.2 Evaluation Methodologies;179
40.3;3 Metrics;180
40.4;4 Conclusion;181
40.5;References;181
41;Design and Control of a Transparent Lower Limb Exoskeleton;183
41.1;1 Introduction;183
41.2;2 Modular Lower Limb Exoskeleton;184
41.3;3 Exoskeleton Evaluation and Control;185
41.4;4 Conclusions;187
41.5;References;187
42;Development and Testing of Full-Body Exoskeleton AXO-SUIT for Physical Assistance of the Elderly;188
42.1;1 Introduction;188
42.2;2 Design and Development of AXO-SUIT;189
42.2.1;2.1 The Lower-Body Subsystem LB-AXO;190
42.2.2;2.2 The Upper-Body Subsystem UB-AXO;190
42.3;3 System Testing;190
42.4;4 Conclusion;192
42.5;References;192
43;Wearable Robotics for Rehabilitation and Assistance in Latin America;193
44;Artificial Vision Algorithm for Object Manipulation with a Robotic Arm in a Semi-Autonomous Brain-Computer Interface;194
44.1;1 Introduction;194
44.2;2 Materials and Methods;195
44.3;3 Results;196
44.4;4 Conclusion;197
44.5;References;197
45;Design Specifications and Usability Issues Considered in the User Centered Design of a Wearable Exoskeleton for Upper Limb of Children with Spastic Cerebral Palsy;199
45.1;Abstract;199
45.2;1 Introduction;199
45.3;2 Materials and Methods;200
45.4;3 Results;201
45.5;4 Discussion and Conclusions;201
45.6;References;202
46;Stance Control with the Active Knee Orthosis ALLOR for Post-Stroke Patients During Walking;203
46.1;1 Introduction;203
46.2;2 Materials and Methods;204
46.2.1;2.1 Advanced Lower-Limb Orthosis for Rehabilitation (ALLOR);204
46.2.2;2.2 Subjects;204
46.2.3;2.3 Protocol;205
46.3;3 Results;205
46.4;4 Conclusion;207
46.5;References;207
47;Gait Phase Detection for Lower Limb Prosthetic Devices;208
47.1;1 Introduction;208
47.2;2 Materials and Methods;209
47.2.1;2.1 Materials;209
47.2.2;2.2 Methods;209
47.3;3 Results;211
47.4;References;212
48;Lower Limb Exoskeletons in Latin-America;213
48.1;Abstract;213
48.2;1 Introduction;213
48.3;2 Lower Limb Exoskeletons in Latin-America;214
48.3.1;2.1 Allor;214
48.3.2;2.2 CPWalker;214
48.3.3;2.3 BioMot;215
48.3.4;2.4 Kinesis;215
48.3.5;2.5 Chief;216
48.4;3 Conclusion;216
48.5;References;216
49;Development of a Visual-Inertial Motion Tracking System for Muscular-Effort/Angular Joint-Position Relation to Obtain a Quantifiable Variable of Spasticity;217
49.1;1 Introduction;217
49.2;2 Hardware Description;217
49.3;3 Data Processing and Sensor Fusion;218
49.3.1;3.1 IMUs Data Acquisition and Signal Conditioning;218
49.3.2;3.2 Visual Data Acquisition;219
49.3.3;3.3 Sensor Fusion;219
49.4;4 Results;220
49.5;5 Conclusions;221
49.6;References;222
50;Wearable Robotic Solutions for Factories of the Future;223
51;Towards Standard Specifications for Back-Support Exoskeletons;224
51.1;1 Introduction;224
51.2;2 Methods;225
51.3;3 Discussion;225
51.4;4 Conclusion;227
51.5;References;227
52;Lift Movement Detection with a QDA Classifier for an Active Hip Exoskeleton;229
52.1;Abstract;229
52.2;1 Introduction;229
52.3;2 Methods;230
52.3.1;2.1 Experimental Setup and Protocol;230
52.3.2;2.2 Lift Detection Algorithm;231
52.4;3 Results;231
52.5;4 Discussion and Conclusion;232
52.6;References;232
53;The Effect of a Passive Trunk Exoskeleton on Functional Performance and Metabolic Costs;234
53.1;Abstract;234
53.2;1 Introduction;234
53.3;2 Objective;235
53.4;3 Methods;235
53.4.1;3.1 Passive Trunk Exoskeleton;235
53.4.2;3.2 Functional Performance;235
53.4.3;3.3 Metabolic Costs;236
53.5;4 Results;236
53.5.1;4.1 Functional Performance;236
53.5.2;4.2 Metabolic Costs;237
53.6;5 Conclusion;237
53.7;References;238
54;Industrial Wearable Exoskeletons and Exosuits Assessment Process;239
54.1;1 Introduction;239
54.2;2 Wearable Technology Industrial - Assessment;240
54.2.1;2.1 State of the Art Technologies;240
54.2.2;2.2 Testing Process;241
54.2.3;2.3 Evaluation Criteria;242
54.3;3 Conclusion and Discussion;242
54.4;References;243
55;Trunk Range of Motion in the Sagittal Plane with and Without a Flexible Back Support Exoskeleton;244
55.1;1 Introduction;244
55.2;2 Material and Methods;245
55.2.1;2.1 Requirements;245
55.2.2;2.2 Concept;245
55.2.3;2.3 Experiments;245
55.3;3 Results;246
55.4;4 Discussion;246
55.5;5 Conclusion;247
55.6;References;247
56;Real-Time Control of Quasi-Active Hip Exoskeleton Based on Gaussian Mixture Model Approach;249
56.1;1 Introduction;249
56.2;2 Materials and Methods;250
56.3;3 Results;251
56.4;4 Discussion;252
56.5;References;253
57;Optimizing Design Characteristics of Passive and Active Spinal Exoskeletons for Challenging Work Tasks;254
57.1;1 Introduction;254
57.2;2 Materials and Methods;255
57.2.1;2.1 Experiments;256
57.2.2;2.2 Human and Exoskeleton Model;256
57.2.3;2.3 Optimal Control Problem Solution;256
57.3;3 Results;257
57.4;4 Discussion;257
57.5;5 Conclusion;258
57.6;References;258
58;Human Modeling and Simulation for Neurorehabilitation Engineering;259
59;Calibration and Validation of a Skeletal Multibody Model for Leg-Orthosis Contact Force Estimation;260
59.1;Abstract;260
59.2;1 Introduction;260
59.3;2 Materials and Methods;261
59.4;3 Results;263
59.5;4 Discussion;263
59.6;5 Conclusions;264
59.7;References;264
60;A Continuous and Differentiable Mechanical Model of Muscle Force and Impedance;265
60.1;1 Introduction;265
60.2;2 Model;267
60.3;3 Results and Conclusion;268
60.4;References;269
61;SimCP: A Simulation Platform to Predict Gait Performance Following Orthopedic Intervention in Children with Cerebral Palsy;270
61.1;Abstract;270
61.2;1 Introduction;270
61.3;2 Materials and Methods;271
61.4;3 Results and Discussion;272
61.5;4 Conclusion;273
61.6;References;273
62;Bio-inspired Walking: From Humanoids to Assistive Devices;274
62.1;1 Introduction;274
62.2;2 General Framework;275
62.3;3 Humanoid Walking by Combining Reflexes and a CPG;275
62.4;4 Human Walking Assistance by Artificial Primitives;276
62.5;5 Conclusion;277
62.6;References;277
63;Design of a Hand Exoskeleton for Use with Upper Limb Exoskeletons;279
63.1;1 Introduction;279
63.2;2 Methods;279
63.2.1;2.1 Design Requirements;279
63.2.2;2.2 Actuation Method;280
63.2.3;2.3 Basic Topology;280
63.2.4;2.4 Link Length Optimization;281
63.3;3 Conclusion;282
63.4;References;283
64;A Real-time Graphic Interface for the Monitoring of the Human Joint Overloadings with Application to Assistive Exoskeletons;284
64.1;1 Introduction;284
64.2;2 Monitoring Method;285
64.3;3 Visual Feedback Interface;285
64.4;4 Conclusion;287
64.5;References;287
65;Smart Human-Machine Systems for Lower-Limb Assistance and Rehabilitation After Paralysis;289
66;Study of Algorithms Classifiers for an Offline BMI Based on Motor Imagery of Pedaling;290
66.1;Abstract;290
66.2;1 Introduction;290
66.3;2 Material and Methods;291
66.3.1;2.1 Subjects;291
66.3.2;2.2 Equipment;291
66.3.3;2.3 Experimental Setup;291
66.3.4;2.4 Signal Processing;292
66.4;3 Results;292
66.5;4 Discussion;294
66.6;5 Conclusion;294
66.7;References;294
67;Exoskeleton Control for Post-stoke Gait Training of a Paretic Limb Based on Extraction of the Contralateral Gait Phase;295
67.1;1 Introduction;295
67.2;2 Material and Methods;296
67.2.1;2.1 Lower-Limb Exoskeleton and Actuators;296
67.2.2;2.2 Gait Phase Extraction;296
67.2.3;2.3 Generating the Assistive Torque;297
67.3;3 Results;298
67.4;4 Discussion;299
67.5;References;299
68;Design of a Passive Exoskeleton to Support Sit-to-Stand Movement: A 2D Model for the Dynamic Analysis of Motion;300
68.1;Abstract;300
68.2;1 Introduction;300
68.3;2 Materials and Methods;301
68.3.1;2.1 Experimental Setup;301
68.3.2;2.2 Biomechanical Model;302
68.4;3 Results and Discussion;303
68.5;4 Conclusions;303
68.6;References;303
69;Walking Assistance of Subjects with Spinal Cord Injury with an Ankle Exoskeleton and Neuromuscular Controller;305
69.1;Abstract;305
69.2;1 Introduction;305
69.3;2 Material and Methods;306
69.3.1;2.1 Achilles Ankle Exoskeleton;306
69.3.2;2.2 Neuromuscular Controller;307
69.3.3;2.3 Enrolled Test Pilot;307
69.3.4;2.4 Controller Customization and Walking Training;307
69.3.5;2.5 Assessment;307
69.4;3 Results;308
69.5;4 Discussion;308
69.6;5 Conclusion;309
69.7;References;309
70;Center of Mass and Postural Adaptations During Robotic Exoskeleton-Assisted Walking for Individuals with Spinal Cord Injury;310
70.1;Abstract;310
70.2;1 Introduction;310
70.3;2 Material and Methods;311
70.3.1;2.1 Participant Demographics and Training Protocol;311
70.3.2;2.2 Data Collection and Statistical Analysis;311
70.4;3 Results;312
70.4.1;3.1 COM Excursions;312
70.4.2;3.2 COM Inclination Angles;312
70.5;4 Discussion;312
70.6;5 Conclusion;313
70.7;References;314
71;Exoskeleton Controller and Design Considerations: Effect on Training Response for Persons with SCI;315
71.1;Abstract;315
71.2;1 Introduction;315
71.3;2 Materials and Methods;316
71.3.1;2.1 Participant Demographics and Training Protocol;316
71.3.2;2.2 Data Collection and Statistical Analysis;316
71.4;3 Results;318
71.4.1;3.1 Gender and Velocity Comparison;318
71.4.2;3.2 Body Composition Variables;318
71.4.3;3.3 Spatial Temporal Variables and Inclination Angles;318
71.5;4 Discussion;318
71.6;5 Conclusion;318
71.7;References;319
72;Biorobotics Approaches to Understand and Restore Human Balance;320
73;Integrating Posture Control in Assistive Robotic Devices to Support Standing Balance;321
73.1;Abstract;321
73.2;1 Introduction;321
73.3;2 Results;322
73.3.1;2.1 Tests of the Four Basic Physical Disturbances;322
73.3.2;2.2 Achieving Conflict-Free Interaction and Co-operation Between Robotic and Human Postural Controls;323
73.4;3 Conclusions;324
73.5;References;324
74;A Computational Framework for Muscle-Level Control of Bi-lateral Robotic Ankle Exoskeletons;325
74.1;Abstract;325
74.2;1 Introduction;325
74.3;2 Method;326
74.4;3 Result and Discussion;328
74.5;4 Conclusion;328
74.6;References;328
75;A Conductive Fabric Based Smart Insole to Measure the Foot Pressure Distribution with High Resolution;329
75.1;Abstract;329
75.2;1 Introduction;329
75.3;2 Method;330
75.3.1;2.1 System Design;330
75.3.2;2.2 Experiment and Validation;330
75.4;3 Results;331
75.5;4 Discussion;331
75.6;5 Conclusion;332
75.7;References;333
76;Training Balance Recovery in People with Incomplete SCI Wearing a Wearable Exoskeleton;334
76.1;Abstract;334
76.2;1 Introduction;334
76.3;2 Materials and Methods;335
76.3.1;2.1 Subjects;335
76.3.2;2.2 Wearable Exoskeleton;335
76.3.3;2.3 Protocol;336
76.3.4;2.4 Data Analysis;336
76.4;3 Results;336
76.5;4 Conclusions;337
76.6;Acknowledgment;337
76.7;References;338
77;Modular Composition of Human Gaits Through Locomotor Subfunctions and Sensor-Motor-Maps;339
77.1;Abstract;339
77.2;1 Introduction;339
77.3;2 Locomotor Subfunctions;339
77.4;3 Sensor-Motor-Maps;340
77.5;4 Conclusion;342
77.6;Acknowledgment;342
77.7;References;342
78;Model-Based Posture Control for a Torque-Controlled Humanoid Robot;344
78.1;Abstract;344
78.2;1 Introduction;344
78.3;2 Balancing Controller;344
78.4;3 Experimental Validation;346
78.5;References;347
79;Exoskeleton Research in Europe;348
80;XoSoft - Iterative Design of a Modular Soft Lower Limb Exoskeleton;349
80.1;1 Introduction;349
80.2;2 System Development;350
80.2.1;2.1 User Centered Design;350
80.2.2;2.2 Beta 1 Prototype;351
80.2.3;2.3 Beta 2 Prototype;351
80.2.4;2.4 Gamma Prototype;351
80.3;3 Testing and Validation;351
80.3.1;3.1 Laboratory Testing;351
80.3.2;3.2 Clinical Testing;352
80.3.3;3.3 Home-Simulated Testing;352
80.4;4 Results and Conclusions;352
80.5;References;352
81;Preliminary Usability and Efficacy Tests in Neurological Patients of an Exoskeleton for Upper-Limb Weight Support;354
81.1;Abstract;354
81.2;1 Introduction;354
81.3;2 Materials and Method;355
81.3.1;2.1 LIGHTarm;355
81.3.2;2.2 Participants;355
81.3.3;2.3 Testing Procedure and Assessment;355
81.3.4;2.4 Outcome Measures;356
81.4;3 Results;356
81.5;4 Conclusions;357
81.6;References;357
82;Symbitron: Symbiotic Man-Machine Interactions in Wearable Exoskeletons to Enhance Mobility for Paraplegics;359
82.1;Abstract;359
82.2;1 Major Achievements;359
82.2.1;1.1 Symbitron Framework;359
82.2.1.1;1.1.1 EtherCAT;359
82.2.1.2;1.1.2 EtherLab and Symbitron Wiki;360
82.2.1.3;1.1.3 Simulink Libraries and GIT Repository;360
82.2.2;1.2 Symbitron Measurement Week;360
82.2.3;1.3 The Symbitron Modular Exoskeleton Hardware and Software;361
82.2.4;1.4 Successful Clinical Training and Evaluation with SCI Test Pilots;361
82.3;2 Final Results and Their Potential Impact and Use;362
83;Beyond Robo-Mate: Towards the Next Generation of Industrial Exoskeletons in Europe;363
83.1;1 Introduction;363
83.2;2 The Robo-Mate Project;364
83.2.1;2.1 Approach;364
83.2.2;2.2 Concept and Prototypes;364
83.2.3;2.3 Testing;364
83.2.4;2.4 Main Outcomes;365
83.3;3 Ongoing and Future Research;365
83.4;References;367
84;The SoftPro Project: Synergy-Based Open-Source Technologies for Prosthetics and Rehabilitation;368
84.1;1 Introduction;369
84.2;2 Materials and Methods;370
84.3;3 Results;370
84.4;4 Conclusion;371
84.5;References;371
85;EUROBENCH: Preparing Robots for the Real World;373
85.1;Abstract;373
85.2;1 Introduction;373
85.3;2 Why Benchmarking?;374
85.4;3 The Cascade Funding Approach;375
85.4.1;3.1 Developing the Framework;375
85.4.2;3.2 Validating the Framework;376
85.5;4 Conclusion;376
85.6;References;376
86;Poster Session;377
87;Actuation Requirements for Assistive Exoskeletons: Exploiting Knowledge of Task Dynamics;378
87.1;1 Introduction;378
87.2;2 Methods;379
87.2.1;2.1 Static Requirements: Maximum Torque;380
87.2.2;2.2 Dynamic Requirements: From Speed to Power;380
87.3;3 Discussion;380
87.4;4 Conclusion;381
87.5;References;381
88;Grasping Detection with Force Sensor Embedded in a Hand Exoskeleton;383
88.1;1 Introduction;383
88.2;2 Materials and Methods;384
88.2.1;2.1 Experimental Setup;384
88.2.2;2.2 Hand Exoskeleton;384
88.2.3;2.3 Force Sensor;385
88.3;3 Results;385
88.4;4 Conclusion;387
88.5;References;387
89;XoSoft Connected Monitor (XCM) Unsupervised Monitoring and Feedback in Soft Exoskeletons of 3D Kinematics, Kinetics, Behavioral Context and Control System Status;388
89.1;Abstract;388
89.2;1 Introduction;388
89.2.1;1.1 Research Question;390
89.3;2 Methods;390
89.4;3 Results;391
89.5;4 Conclusion;392
89.6;References;392
90;Tactile and Proximity Servoing by a Multi-modal Sensory Soft Hand;393
90.1;1 Introduction;393
90.2;2 Material and Methods;394
90.3;3 Results;395
90.4;4 Conclusions;396
90.5;References;397
91;Improved Fabrication of Soft Robotic Pad for Wearable Assistive Devices;398
91.1;Abstract;398
91.2;1 Introduction;398
91.3;2 Improved Fabrication of Soft Robotic Pad;399
91.4;3 Design of a Soft Assistive Device for Elbow Flexion;400
91.5;4 Conclusion;401
91.6;Acknowledgment;401
91.7;References;401
92;The Exosleeve: A Soft Robotic Exoskeleton for Assisting in Activities of Daily Living;403
92.1;Abstract;403
92.2;1 Introduction;403
92.3;2 Material and Methods;404
92.3.1;2.1 Exoskeleton and Actuator Design;404
92.3.2;2.2 Healthy Subject Testing;405
92.4;3 Results;405
92.5;4 Discussion and Future Work;406
92.6;References;406
93;Exoskeleton with Soft Actuation and Haptic Interface;407
93.1;Abstract;407
93.2;1 Introduction;407
93.3;2 Material and Methods;408
93.4;3 Results;409
93.5;4 Conclusion;410
93.6;Acknowledgment;410
93.7;References;410
94;Comparison of a Soft Exosuit and a Rigid Exoskeleton in an Assistive Task;412
94.1;1 Introduction;412
94.2;2 Materials and Methods;413
94.3;3 Results and Discussions;415
94.4;References;416
95;Design of Soft Exosuit for Elbow Assistance Using Butyl Rubber Tubes and Textile;417
95.1;1 Introduction;417
95.2;2 Material and Methods;418
95.3;3 Results;418
95.4;4 Conclusions;420
95.5;References;421
96;Optimizing Body Thickness of Watchband-Type Soft Pneumatic Actuator for Feedback of Prosthesis Grasping Force;422
96.1;Abstract;422
96.2;1 Introduction;422
96.3;2 Design and Basic Structure of Actuator;423
96.4;3 Method of Comparison and Experiments;424
96.5;4 Results and Discussion;424
96.6;5 Conclusion;425
96.7;References;426
97;The Effect of Negative Damping at the Hip Joint During Level Walking: A Preliminary Testing;427
97.1;1 Introduction;427
97.2;2 Material and Methods;428
97.2.1;2.1 Negative Damping Controller;428
97.2.2;2.2 Hip Exoskeleton;429
97.2.3;2.3 Methods;429
97.3;3 Results;430
97.4;4 Conclusion;431
97.5;References;431
98;Overview and Challenges for Controlling Back-Support Exoskeletons;432
98.1;1 Introduction;432
98.2;2 Methods;432
98.3;3 Discussion;434
98.4;4 Conclusion;435
98.5;References;435
99;Assessment of a Hand Exoskeleton Control Strategy Based on User's Intentions Classification Starting from Surface EMG Signals;437
99.1;1 Introduction;437
99.2;2 The Controlled Device;438
99.3;3 Control Strategy and Preliminary Tests;438
99.4;4 Results;440
99.5;5 Conclusion and Further Developments;440
99.6;References;441
100;Contribution of a Knee Orthosis to Walking;442
100.1;1 Introduction;442
100.2;2 Material and Methods;443
100.2.1;2.1 Model of the Biped;443
100.2.2;2.2 Definition of the Optimal Trajectories;443
100.2.3;2.3 Contribution of the Orthosis;444
100.3;3 Results;445
100.4;4 Conclusion;445
100.5;References;446
101;Human Trunk Stabilization with Hip Exoskeleton for Enhanced Postural Control;447
101.1;1 Introduction;447
101.2;2 Material and Methods;448
101.3;3 Results;449
101.4;4 Discussion;450
101.5;5 Conclusion;450
101.6;References;451
102;Development of a Wearable Haptic Feedback System for Limb Movement Symmetry Training;452
102.1;Abstract;452
102.2;1 Introduction;452
102.3;2 Material and Methods;453
102.4;3 Results and Discussion;454
102.5;4 Conclusion and Future Work;455
102.6;References;455
103;Failure Mode and Effect Analysis (FMEA)-Driven Design of a Planetary Gearbox for Active Wearable Robotics;457
103.1;Abstract;457
103.2;1 Introduction;457
103.3;2 FMEA-Driven Transmission Design;458
103.3.1;2.1 Product Specifications;458
103.3.2;2.2 System Structure and Functional Net;458
103.3.3;2.3 Failure Analysis: Consequences and Causes;458
103.3.4;2.4 Risk Assessment;459
103.3.5;2.5 Optimization;459
103.4;3 Results;460
103.5;4 Conclusion;460
103.6;References;460
104;Introducing Series Elastic Links;462
104.1;1 Introduction;462
104.2;2 Series Elastic Link Modeling;463
104.3;3 Series Elastic Link Implementation and Experimental Results;464
104.4;References;466
105;Polymer Optical Fiber Sensors Approaches for Insole Instrumentation;467
105.1;Abstract;467
105.2;1 Introduction;467
105.3;2 Material and Methods;468
105.4;3 Results and Discussion;469
105.5;4 Conclusion;470
105.6;References;471
106;Pushing the Limits: A Novel Tape Spring Pushing Mechanism to be Used in a Hand Orthosis;472
106.1;1 Introduction;472
106.2;2 Method;473
106.2.1;2.1 Tape Springs;473
106.2.2;2.2 Force Transmission Conceptual Design;473
106.2.3;2.3 Flattening of the Tape Spring;474
106.3;3 Results;475
106.4;4 Conclusion;475
106.5;References;476
107;Design and Preliminary Validation of a Smart Personal Flotation Device;477
107.1;1 Introduction;477
107.2;2 Materials and Methods;478
107.2.1;2.1 Design;478
107.2.2;2.2 Experimental Protocol and Data Analysis;479
107.3;3 Results and Discussion;479
107.4;4 Conclusion;480
107.5;References;481
108;Introducing Compound Planetary Gears (C-PGTs): A Compact Way to Achieve High Gear Ratios for Wearable Robots;482
108.1;1 Introduction;482
108.2;2 Common Gearboxes for Wearable Robots;483
108.2.1;2.1 Series Configuration of PGTs;483
108.2.2;2.2 Harmonic Drive;483
108.3;3 Compound Planetary Gear Train;484
108.3.1;3.1 Gear Ratio;484
108.3.2;3.2 Efficiency;485
108.3.3;3.3 Size;485
108.4;4 Conclusion and Future Work;486
108.5;References;486
109;Model-Based Approach in Developing a Hand Exoskeleton for Children: A Preliminary Study;487
109.1;1 Introduction;487
109.2;2 Hand Model;488
109.3;3 Exoskeleton;489
109.4;4 Results;490
109.5;5 Conclusion and Further Developments;490
109.6;References;491
110;Design of Bio-joint Shaped Knee Exoskeleton Assisting for Walking and Sit-to-Stance;492
110.1;Abstract;492
110.2;1 Introduction;492
110.3;2 Data Analysis;493
110.4;3 Design Parameters;493
110.5;4 Conclusion;495
110.6;References;496
111;ANT-M: Design of Passive Lower-Limb Exoskeleton for Weight-Bearing Assistance in Industry;497
111.1;Abstract;497
111.2;1 Introduction;497
111.3;2 Weight Lifting;498
111.4;3 Conceptual Design;498
111.5;4 Design Optimization;500
111.5.1;4.1 Model Preparation for Optimization;500
111.5.2;4.2 Topology Optimization;500
111.6;5 Conclusion;501
111.7;References;501
112;Effects of an Inclination-Controlled Active Spinal Exoskeleton on Spinal Compression Forces;502
112.1;Abstract;502
112.2;1 Introduction;502
112.3;2 Methods;503
112.3.1;2.1 Exoskeleton;503
112.3.2;2.2 Participants & Experimental Procedure;503
112.3.3;2.3 Data Analysis;504
112.3.4;2.4 Statistics;504
112.4;3 Results and Discussion;504
112.5;4 Conclusion;505
112.6;References;506
113;Novel Mechanism of Upper Limb Exoskeleton for Weight Support;507
113.1;Abstract;507
113.2;1 Introduction;507
113.3;2 Materials and Methods;508
113.4;3 Design Methodology;509
113.4.1;3.1 Scapulohumeral Rhythm Compensation;509
113.4.2;3.2 Force Transmission;510
113.5;4 Conclusion and Discussion;510
113.6;References;511
114;Human-Centered Design of an Upper-Limb Exoskeleton for Tedious Maintenance Tasks;512
114.1;1 Introduction;512
114.2;2 Exoskeleton Design;513
114.2.1;2.1 Concept of the Robotic System;513
114.2.2;2.2 Selection of Actuators;514
114.2.3;2.3 Exoskeleton Model;514
114.3;3 Validation of the Robotic System;515
114.4;4 Conclusion;515
114.5;References;516
115;A Supernumerary Soft Robotic Hand-Arm System for Improving Worker Ergonomics;517
115.1;1 Introduction;517
115.2;2 System Description;518
115.3;3 Improving Worker Ergonomics;519
115.4;4 Preliminary Results;521
115.5;References;521
116;An Optimization Approach to Design Control Strategies for Soft Wearable Passive Exoskeletons;522
116.1;Abstract;522
116.2;1 Introduction;522
116.3;2 Methods;523
116.3.1;2.1 Musculoskeletal and Soft Wearable Device Models;523
116.3.2;2.2 Optimization;523
116.4;3 Results;524
116.5;4 Discussion and Conclusions;525
116.6;Acknowledgment;526
116.7;References;526
117;Actuator Optimization for a Back-Support Exoskeleton: The Influence of the Objective Function;527
117.1;1 Introduction;527
117.2;2 Materials and Methods;528
117.3;3 Results;528
117.4;4 Discussion;530
117.5;5 Conclusion;530
117.6;References;531
118;Design of MobIle Digit Assistive System (MIDAS): A Passive Hand Extension Exoskeleton for Post Stroke Rehabilitation;532
118.1;Abstract;532
118.2;1 Introduction;532
118.3;2 Methods;533
118.3.1;2.1 DigEx Redesign;533
118.3.2;2.2 MIDAS Redesign;534
118.3.3;2.3 Friction, Bending, and Profile Reduction;534
118.3.4;2.4 Cam Quick-Change System;534
118.4;3 Results;534
118.5;4 Discussion and Conclusions;535
118.6;Acknowledgments;536
118.7;References;536
119;Correction to: Exoskeleton with Soft Actuation and Haptic Interface;537
119.1;Correction to: Chapter “Exoskeleton with Soft Actuation and Haptic Interface” in: M. C. Carrozza et al. (Eds.): Wearable Robotics: Challenges and Trends, BIOSYSROB 22, https://doi.org/10.1007/978-3-030-01887-0_79;537
120;Author Index;538



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.