Catoni / Boccaletti / Cannata | The Mathematics of Minkowski Space-Time | E-Book | www.sack.de
E-Book

E-Book, Englisch, 256 Seiten, eBook

Reihe: Frontiers in Mathematics

Catoni / Boccaletti / Cannata The Mathematics of Minkowski Space-Time

With an Introduction to Commutative Hypercomplex Numbers
2008
ISBN: 978-3-7643-8614-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

With an Introduction to Commutative Hypercomplex Numbers

E-Book, Englisch, 256 Seiten, eBook

Reihe: Frontiers in Mathematics

ISBN: 978-3-7643-8614-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book arose out of original research on the extension of well-established applications of complex numbers related to Euclidean geometry and to the space-time symmetry of two-dimensional Special Relativity. The system of hyperbolic numbers is extensively studied, and a plain exposition of space-time geometry and trigonometry is given. Commutative hypercomplex systems with four unities are studied and attention is drawn to their interesting properties.

Catoni / Boccaletti / Cannata The Mathematics of Minkowski Space-Time jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


The Mathematics of Minkowski Space-Time: 1 N-Dimensional Hypercomplex Numbers and the associated Geometries.- Commutative Hypercomplex Number Systems.- The General Two-Dimensional System.- Linear Transformations and Geometries.- The Geometries Associated with Hypercomplex Numbers.- Conclusions.- 2 Trigonometry in the Minkowski Plane.- Geometrical Representation of Hyperbolic Numbers.- Basics of Hyperbolic Trigonometry.- Geometry in Pseudo-Euclidean Cartesian Plane.- Trigonometry in the Pseudo-Euclidean Plane.- Theorems on Equilateral Hyperbolas in the Pseudo-Euclidean Plane.- Some Examples of Triangle Solutions in the Minkowski Plane.- Conclusions.- 3 Uniform and Accelerated Motions in the Minkowski Space-Time (Twin Paradox).- Inertial Motions.- Inertial and Uniformly Accelerated Motions.- Non-uniformly Accelerated Motions.- Conclusions.- 4 General Two-Dimensional Hypercomplex Numbers.-Geometrical Representation.- Geometry and Trigonometry in Two-Dimensional Algebras.- Some Properties of Fundamental Conic Section.- Numerical Examples.- 5 Functions of a Hyperbolic Variable.- Some Remarks on Functions of a Complex Variable.- Functions of Hypercomplex Variables.- The Functions of a Hyperbolic Variable.- The Elementary Functions of a Canonical Hyperbolic Variable.- H-Conformal Mappings.- Commutative Hypercomplex Systems with Three Unities.- 6 Hyperbolic Variables on Lorentz Surfaces.- Introduction.- Gauss: Conformal Mapping of Surfaces.- Extension of Gauss Theorem: Conformal Mapping of Lorentz Surfaces.- Beltrami: Complex Variables on a Surface.- Beltrami’s Integration of Geodesic Equations.- Extension of Beltrami’s Equation to Non-Definite Differential Forms.- 7 Constant Curvature Lorentz Surfaces.- Introduction.- Constant Curvature RiemannSurfaces.- Constant Curvature Lorentz Surfaces.- Geodesics and Geodesic Distances on Riemann and Lorentz Surfaces.- Conclusions.- 8 Generalization of Two-Dimensional Special Relativity (Hyperbolic Transformations and the Equivalence Principle).- Physical Meaning of Transformations by Hyperbolic Functions.- Physical Interpretation of Geodesics on Riemann and Lorentz Surfaces with Positive Constant Curvature.- Einstein’s Way to General Relativity.- Conclusions.- II An Introduction to Commutative Hypercomplex Numbers.- 9 Commutative Segre’s Quaternions.- Introduction.- Hypercomplex Systems with Four Units.- Historical Introduction of Segre’s Quaternion.- Algebraic Properties of Commutative Quaternions.- Functions of a Quaternion Variable.- Mapping by Means of Quaternion Functions.- Elementary Functions of the Quaternions.- Elliptic-Hyperbolic Quaternions.- Elliptic-Parabolic Generalized Segre’s Quaternions.- 10 Constant Curvature Segre’s Quaternion Spaces.- Introduction.- Quaternion differential geometry and geodesic equations.- Orthogonality in Segre’s Quaternion Space.- Constant Curvature Quaternion Spaces.- Geodesic Equations in Quaternion Space.- Beltrami’s Integration Method for Quaternion Spaces.- Beltrami’s Integration Method for Quaternion Spaces.- Conclusions.- 11 A Matrix Formalization for Commutative Hypercomplex Systems.- Mathematical Operations.- Properties of the Characteristic Matrix M.- Functions of Hypercomplex Variable.- Functions of a Two-Dimensional Hypercomplex Variable.- Derivatives of a Hypercomplex Function.- Characteristic Differential Equation.- A Equivalence Between the Formalizations of Hypercomplex Numbers.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.