E-Book, Englisch, 424 Seiten
Reihe: NanoScience and Technology
Celano Electrical Atomic Force Microscopy for Nanoelectronics
1. Auflage 2019
ISBN: 978-3-030-15612-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 424 Seiten
Reihe: NanoScience and Technology
ISBN: 978-3-030-15612-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
The tremendous impact of electronic devices on our lives is the result of continuous improvements of the billions of nanoelectronic components inside integrated circuits (ICs). However, ultra-scaled semiconductor devices require nanometer control of the many parameters essential for their fabrication. Through the years, this created a strong alliance between microscopy techniques and IC manufacturing. This book reviews the latest progress in IC devices, with emphasis on the impact of electrical atomic force microscopy (AFM) techniques for their development. The operation principles of many techniques are introduced, and the associated metrology challenges described. Blending the expertise of industrial specialists and academic researchers, the chapters are dedicated to various AFM methods and their impact on the development of emerging nanoelectronic devices. The goal is to introduce the major electrical AFM methods, following the journey that has seen our lives changed by the advent of ubiquitous nanoelectronics devices, and has extended our capability to sense matter on a scale previously inaccessible.
Umberto Celano is a senior research scientist at imec (Belgium), where his interests encompass solid-state physics and materials science for application in nanoelectronics and emerging devices. In this area, he conducted research at the border between engineering and fundamental science in various institutions such as KU Leuven, Osaka University, and Stanford University. He received his Ph.D. in Physics from the University of Leuven in 2015. Previously, Umberto obtained a B.Eng. in Electronic Engineering and an M.Sc. degree in Nanoelectronics from the University of Rome Sapienza, Italy.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;Contributors;14
3;Acronyms;17
4;1 The Atomic Force Microscopy for Nanoelectronics;21
4.1;1.1 Introduction;21
4.2;1.2 Atomic Force Microscopy: The Swiss-Knife of Nanoelectronics;23
4.3;1.3 Introduction to Atomic Force Microscopy;27
4.3.1;1.3.1 Basic Operating Principles;27
4.3.2;1.3.2 To Touch, or Not To Touch, That Is the Question;30
4.3.3;1.3.3 Mechanisms of Contrast Formation;32
4.3.4;1.3.4 Effective Voltage Drop, Phantom Force, and Biasing Schemes;38
4.4;1.4 Emerging Nanoelectronics Devices and Metrology Challenges;39
4.4.1;1.4.1 Device Scaling: An Increasingly Difficult Miniaturization Landscape;40
4.4.2;1.4.2 New Devices Based on New Physics;41
4.5;1.5 Present Status and Future Applications;42
4.6;References;44
5;2 Conductive AFM for Nanoscale Analysis of High-k Dielectric Metal Oxides;49
5.1;2.1 The C-AFM Technique;50
5.1.1;2.1.1 AFM in Contact Mode with Conducting Tips;50
5.1.2;2.1.2 C-AFM Modes;52
5.1.3;2.1.3 Electronics;53
5.1.4;2.1.4 Analysis of the Tip Sample Interaction: Energy Barriers;57
5.1.5;2.1.5 Requirements for Sample Preparation—The Role of Adsorbates;59
5.1.6;2.1.6 C-AFM with Atomic Resolution;60
5.2;2.2 Basics of High-k Dielectrics;62
5.2.1;2.2.1 Scaling Limits and Challenges in Semiconductor Technology;62
5.2.2;2.2.2 Technologically Relevant Metal Oxides with High k;63
5.2.3;2.2.3 Synthesis of Metal Oxides;64
5.3;2.3 Local Analysis of Electronic Transport Properties in Metal Oxide Thin Films;66
5.3.1;2.3.1 Variation of Nanoscale Conductivity Seen by Nanoelectrodes;66
5.3.2;2.3.2 Localized Nature of Leakage Current;66
5.3.3;2.3.3 Correlation of the Localized Conductivity with the Surface Potential;69
5.3.4;2.3.4 Tuning the Conductivity by Thermal Annealing;71
5.3.5;2.3.5 Confinement of Conductivity at Surfaces and Interfaces;73
5.4;2.4 Influence of Extended Defects on the Local Conductivity of Single Crystals;75
5.4.1;2.4.1 Current Channelling Along Dislocations;75
5.4.2;2.4.2 Analysis of Bulk Conductivity by the Cleaving Method;76
5.4.3;2.4.3 Ferroelectric Domain Walls as Conducting Paths;77
5.5;2.5 Manipulation of the Conductivity by C-AFM;80
5.5.1;2.5.1 Tip-Induced Memristive Switching of Single Dislocations in SrTiO3;80
5.5.2;2.5.2 Creation of Conducting Nanowires on LAO/STO Structures;82
5.5.3;2.5.3 Electrical Nanopatterning of Oxide Surfaces;83
5.6;References;86
6;3 Mapping Conductance and Carrier Distributions in Confined Three-Dimensional Transistor Structures;91
6.1;3.1 Introduction: The Fundamentals of SSRM;92
6.1.1;3.1.1 Basic Principles;92
6.1.2;3.1.2 Physics of the Nanoscale SSRM Contact;94
6.1.3;3.1.3 Quantification;98
6.1.4;3.1.4 Practical Aspects;100
6.1.5;3.1.5 Application to Planar Transistor Technologies;103
6.2;3.2 SSRM Applied to 3D Transistor Architectures;103
6.2.1;3.2.1 CMOS Scaling and the Advent of 3D Devices;104
6.2.2;3.2.2 Revisiting Dopant Metrology Requirements;105
6.2.3;3.2.3 Understanding Dopant Incorporation and Activation in 3D Structures;106
6.2.4;3.2.4 Tomographic Carrier Mapping;111
6.2.5;3.2.5 Outsmarting Parasitic Resistances: Fast Fourier Transform-SSRM;115
6.2.6;3.2.6 Toward Holistic Transistor Metrology: Combining TEM and SSRM;120
6.3;3.3 Summary;122
6.4;References;123
7;4 Scanning Capacitance Microscopy for Two-Dimensional Carrier Profiling of Semiconductor Devices;127
7.1;4.1 Working Principle of Scanning Capacitance Microscopy;127
7.2;4.2 Applications of Scanning Capacitance Microscopy;130
7.2.1;4.2.1 Effect of Hot Carrier Stress on Device Junctions;130
7.2.2;4.2.2 Root Cause Analysis for Pin Leakage;137
7.2.3;4.2.3 Junction Profiling of Ge Photodetector Structures Using Scanning Capacitance Microscopy and Electron Holography;147
7.2.4;4.2.4 Innovative Use of FA Techniques to Resolve Junction Scaling Issues at Advanced Technology Nodes;155
7.3;4.3 Summary;161
7.4;References;161
8;5 Oxidation and Thermal Scanning Probe Lithography for High-Resolution Nanopatterning and Nanodevices;163
8.1;5.1 Introduction;163
8.2;5.2 Oxidation Scanning Probe Lithography: Direct Chemical Modification at the Nanoscale;165
8.2.1;5.2.1 Mechanism and Growth Kinetics. Oxidation Parameters and Operation Modes;165
8.2.2;5.2.2 Materials Modified by Oxidation Scanning Probe Lithography;171
8.3;5.3 Thermal Scanning Probe Lithography: Fast Turnaround Nanofabrication in Ambient Conditions Combining Thermal Probes and Focused Lasers;178
8.4;5.4 Conclusion. Strengths and Limitations of SPL;181
8.5;References;183
9;6 Characterizing Ferroelectricity with an Atomic Force Microscopy: An All-Around Technique;193
9.1;6.1 Introduction;194
9.2;6.2 Piezoresponse Force Microscopy as a Domain Imaging Technique;194
9.2.1;6.2.1 Principles of Imaging Ferroelectric Domains;194
9.2.2;6.2.2 The Converse Piezoelectric Effect as Imaging Technique;195
9.2.3;6.2.3 Piezoresponse as a Quantitative Technique;197
9.2.4;6.2.4 Practical Aspects for Doing PFM;199
9.3;6.3 The Nano-PUND Technique;202
9.3.1;6.3.1 The Principle of PUND Measurement;203
9.3.2;6.3.2 Nano-PUND: PUND Method Implemented in an AFM;204
9.3.3;6.3.3 Examples and Applications of Nano-PUND Measurements;205
9.3.4;6.3.4 Future Developments of Nano-PUND Technique;207
9.4;6.4 Direct Piezoelectric Force Microscopy as a Quantitative Tool;208
9.4.1;6.4.1 Principles of DPFM;208
9.4.2;6.4.2 Quantitative Data in DPFM;212
9.4.3;6.4.3 Practical How-to Guide for Imaging with DPFM;213
9.5;6.5 Applications of Nanoscale Ferroelectric Characterization into Semiconductors;216
9.5.1;6.5.1 Solar Cells;216
9.5.2;6.5.2 Sensors;218
9.5.3;6.5.3 Negative Capacitance;218
9.6;References;220
10;7 Electrical AFM for the Analysis of Resistive Switching;224
10.1;7.1 Introduction to Resistive Switching;224
10.1.1;7.1.1 Devices and Applications;225
10.1.2;7.1.2 Physics of Resistive Switching;226
10.2;7.2 AFM Experimental Setup for Resistive Switching Characterization;228
10.2.1;7.2.1 Advantages of AFM;228
10.2.2;7.2.2 Contact AFM Techniques;228
10.2.3;7.2.3 Non-contact AFM Techniques;230
10.3;7.3 Noteworthy AFM Scientific Results;231
10.3.1;7.3.1 Interfacial Switching;232
10.3.2;7.3.2 Filamentary Switching;233
10.3.3;7.3.3 C-AFM as a Nano-probe for Critical Morphologies;240
10.4;7.4 Conclusions;243
10.5;7.5 Perspectives;244
10.6;References;244
11;8 Magnetic Force Microscopy for Magnetic Recording and Devices;249
11.1;8.1 Introduction;249
11.1.1;8.1.1 Magnetic Imaging;250
11.1.2;8.1.2 Magnetic Force Microscopy;251
11.1.3;8.1.3 Other SPM-Based Magnetic Microscopy;252
11.2;8.2 Principles of Non-contact/Tapping Mode;255
11.2.1;8.2.1 Principles of Non-contact Atomic Force Microscopy;255
11.2.2;8.2.2 Principles of Magnetic Force Microscopy;256
11.3;8.3 Magnetic Tips and Specifications;259
11.3.1;8.3.1 Magnetic Tips;259
11.3.2;8.3.2 Improvement of Specifications;269
11.4;8.4 Applications for Magnetic Recording;269
11.4.1;8.4.1 3.5-in. Floppy Disk Introduced in 1987;270
11.4.2;8.4.2 Zip Drive Introduced in 1994;271
11.4.3;8.4.3 Fujitsu HDD Introduced in 2007;272
11.4.4;8.4.4 Seagate HDD Introduced in 2009;274
11.4.5;8.4.5 Western Digital HDD Introduced in 2012;274
11.4.6;8.4.6 Seagate HDD Introduced in 2016;274
11.4.7;8.4.7 Outlook;275
11.5;8.5 Applications for Magnetic Memories and Devices;277
11.5.1;8.5.1 Magnetic Random Access Memory and Spin Random Access Memory;277
11.5.2;8.5.2 Racetrack Memory;278
11.5.3;8.5.3 Magnetic Skyrmion Logics;279
11.6;References;281
12;9 Space Charge at Nanoscale: Probing Injection and Dynamic Phenomena Under Dark/Light Configurations by Using KPFM and C-AFM;284
12.1;9.1 Context;285
12.1.1;9.1.1 Miniaturization of Thin Dielectric Layers;285
12.1.2;9.1.2 Interfaces;286
12.2;9.2 KPFM and C-AFM Measurement Under Dark and Light Configurations;287
12.2.1;9.2.1 Introduction to Surface Potential;287
12.2.2;9.2.2 Surface Potential Measurement in AM-KPFM;288
12.2.3;9.2.3 Surface Potential Measurement in FM-KPFM;291
12.2.4;9.2.4 Surface Potential Measurement in PF-KPFM;291
12.2.5;9.2.5 Photoconductive and Photo-KPFM Modes;293
12.2.6;9.2.6 KPFM Modelling;294
12.3;9.3 Local Charges Injection Mechanisms;295
12.3.1;9.3.1 Local Injection Using Conductive AFM-Tip and Surface Potential Measurements;296
12.3.2;9.3.2 Charges Injection and Decay in Thin Dielectric Layers;300
12.4;9.4 KPFM for Space Charge Probing in Semiconductor and Dielectric Materials;304
12.4.1;9.4.1 KPFM Measurements on Bias Electronic Devices: Challenge and Bottleneck;304
12.4.2;9.4.2 Methodology for Charge Density Profile Determination from KPFM Measurements;304
12.4.3;9.4.3 Applications to Dielectrics and Semiconductors;306
12.5;9.5 Nanoscale Opto-Electrical Characterization of Thin Film Based Solar Cells Using KPFM and C-AFM;309
12.5.1;9.5.1 Mapping Measurements;309
12.5.2;9.5.2 Localized Current-Voltage Measurements;310
12.6;9.6 Conclusion and Overview;312
12.7;References;313
13;10 Conductive AFM of 2D Materials and Heterostructures for Nanoelectronics;319
13.1;10.1 Introduction;319
13.2;10.2 Large Area Synthesis of Graphene, MoS2 and h-BN for Electronics;322
13.3;10.3 Overview of 2D Materials-Based Electronic Devices;326
13.3.1;10.3.1 Graphene FETs for High Frequency Electronics;326
13.3.2;10.3.2 2D-Semiconductors FETs for Digital Electronics;327
13.3.3;10.3.3 Vertical Transistors Based on 2D-Materials Heterostructures;329
13.3.4;10.3.4 Transistors Based on 2D Materials Heterojunctions with Bulk Semiconductors;331
13.4;10.4 C-AFM Applications to 2D Material and Devices: Case Studies;335
13.4.1;10.4.1 Nanoscale Mapping of Transport Properties in Graphene and MoS2;335
13.4.2;10.4.2 Vertical Current Injection Through 2D/3D or 2D/2D Materials Heterojunctions;344
13.4.3;10.4.3 Electrical Characterization of h-BN as Two Dimensional Dielectric: Lateral Inhomogeneity, Reliability and Dielectric Breakdown;349
13.5;10.5 Summary;358
13.6;References;359
14;11 Diamond Probes Technology;367
14.1;11.1 Introduction;368
14.2;11.2 Molded Diamond Tip Probes;370
14.2.1;11.2.1 Basic Fabrication Process;371
14.2.2;11.2.2 Probe Process Variations;374
14.2.3;11.2.3 Fabrication Results;375
14.3;11.3 Probe Characterization;379
14.3.1;11.3.1 Probe Storage Considerations;380
14.4;11.4 Conclusions on Molded Diamond Probes;384
14.5;11.5 Plasma Etched Single Crystal Doped Diamond Probes;384
14.5.1;11.5.1 Manufacturing;385
14.6;11.6 Applications;388
14.6.1;11.6.1 Scanning Tunneling Microscopy—Atomic Resolution Imaging;389
14.6.2;11.6.2 Conductive Atomic Force Microscopy;389
14.6.3;11.6.3 Scanning Capacitance Microscopy;390
14.6.4;11.6.4 Scanning Spreading Resistance Microscopy;393
14.6.5;11.6.5 Measurement of High Aspect Ratio Structures;393
14.7;11.7 Conclusions and Outlook;396
14.8;References;397
15;12 Scanning Microwave Impedance Microscopy (sMIM) in Electronic and Quantum Materials;401
15.1;12.1 Introduction;401
15.2;12.2 Theory of Operation—sMIM;402
15.2.1;12.2.1 Working Principal of sMIM;402
15.2.2;12.2.2 Contrast Mechanism;404
15.2.3;12.2.3 Technique Benefits;405
15.2.4;12.2.4 Single Electrode Measurement;405
15.2.5;12.2.5 Measuring Buried Structures;405
15.2.6;12.2.6 Monotonic with Permittivity;407
15.2.7;12.2.7 Monotonic with Log Doping Concentration;408
15.3;12.3 Characterization of Nanomaterials with sMIM;411
15.3.1;12.3.1 Dielectric Materials;411
15.3.2;12.3.2 Semiconducting Materials;411
15.3.3;12.3.3 2D Materials;414
15.3.4;12.3.4 Quantum Materials;416
15.4;12.4 Summary and Conclusion;419
15.5;References;421




