Chamberlain / Luszczek / Varbanescu | High Performance Computing | Buch | 978-3-030-78712-7 | sack.de

Buch, Englisch, Band 12728, 474 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 744 g

Reihe: Lecture Notes in Computer Science

Chamberlain / Luszczek / Varbanescu

High Performance Computing

36th International Conference, ISC High Performance 2021, Virtual Event, June 24 - July 2, 2021, Proceedings
1. Auflage 2021
ISBN: 978-3-030-78712-7
Verlag: Springer International Publishing

36th International Conference, ISC High Performance 2021, Virtual Event, June 24 - July 2, 2021, Proceedings

Buch, Englisch, Band 12728, 474 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 744 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-030-78712-7
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the 36th International Conference on High Performance Computing, ISC High Performance 2021, held virtually in June/July 2021.

The 24 full papers presented were carefully reviewed and selected from 74 submissions. The papers cover a broad range of topics such as architecture, networks, and storage; machine learning, AI, and emerging technologies; HPC algorithms and applications; performance modeling, evaluation, and analysis; and programming environments and systems software.

Chamberlain / Luszczek / Varbanescu High Performance Computing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Architecture, Networks, and Storage.- Microarchitecture of a Configurable High-radix Router for Exascale Interconnect.- BluesMPI: Efficient MPI Non-blocking Alltoall Offloading Designs on Modern BlueField Smart NICs.- Lessons Learned from Accelerating Quicksilver on Programmable Integrated Unified Memory Architecture (PIUMA) and How that’s Different from CPU.- A Hierarchical Task Scheduler for Heterogeneous Computing.- Machine Learning, AI, and Emerging Technologies.- Auto-Precision Scaling for Distributed Deep Learning.- FPGA Acceleration of Number Theoretic Transform.- Designing a ROCm-aware MPI Library for AMD GPUs: Early Experiences.- A Tunable Implementation of Quality-of-Service Classes for HPC Networks.- Scalability of Streaming Anomaly Detection in an Unbounded Key Space using Migrating Threads.- HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads.- Proctor: A Semi-Supervised Performance Anomaly Diagnosis Framework for Production HPC Systems.-HPC Algorithms and Applications.- COSTA: Communication-Optimal Shuffle and Transpose Algorithm with Process Relabeling.- Enabling AI-Accelerated Multiscale Modeling of Thrombogenesis at Millisecond and Molecular Resolutions on Supercomputers.- Evaluation of the NEC Vector Engine for Legacy CFD Codes.- Distributed Sparse Block Grids on GPUs.- iPUG: Accelerating Breadth-First Graph Traversals using Manycore Graphcore IPUs.- Performance Modeling, Evaluation, and Analysis.- Optimizing GPU-enhanced HPC System and Cloud Procurements for Scientific Workloads.- A Performance Analysis of Modern Parallel Programming Models Using a Compute-Bound Application.- Analytic Modeling of Idle Waves in Parallel Programs: Communication, Cluster Topology, and Noise Impact.- Performance of the Supercomputer Fugaku for Breadth-First Search in Graph500 Benchmark.- Under the Hood of SYCL - An Initial Performance Analysis With an Unstructured-mesh CFD Application.- Characterizing Containerized HPCApplication Performance at Petascale on CPU and GPU Architectures.- Ubiquitous Performance Analysis.- Programming Environments and Systems Software.- Artemis: Automatic Runtime Tuning of Parallel Execution Parameters Using Machine Learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.