Chambers | The Practical Handbook of Genetic Algorithms | Buch | 978-0-8493-2529-8 | www.sack.de

Buch, Englisch, 448 Seiten, Format (B × H): 165 mm x 244 mm, Gewicht: 812 g

Chambers

The Practical Handbook of Genetic Algorithms


1. Auflage 1995
ISBN: 978-0-8493-2529-8
Verlag: CRC Press

Buch, Englisch, 448 Seiten, Format (B × H): 165 mm x 244 mm, Gewicht: 812 g

ISBN: 978-0-8493-2529-8
Verlag: CRC Press


The mathematics employed by genetic algorithms (GAs)are among the most exciting discoveries of the last few decades. But what exactly is a genetic algorithm? A genetic algorithm is a problem-solving method that uses genetics as its model of problem solving. It applies the rules of reproduction, gene crossover, and mutation to pseudo-organisms so those "organisms" can pass beneficial and survival-enhancing traits to new generations. GAs are useful in the selection of parameters to optimize a system's performance. A second potential use lies in testing and fitting quantitative models. Unlike any other book available, this interesting new text/reference takes you from the construction of a simple GA to advanced implementations. As you come to understand GAs and their processes, you will begin to understand the power of the genetic-based problem-solving paradigms that lie behind them.

Chambers The Practical Handbook of Genetic Algorithms jetzt bestellen!

Zielgruppe


Professional

Weitere Infos & Material


Contents

Introduction

Multi-Niche Crowding for Multi-modal Search

Introduction

Genetic Algorithms for Multi-modal Search

Application of MNC to Multi-modal Test Functions

Application to DNA Restriction Fragment Map Assembly

Results and Discussion

Conclusions

Previous Related Work and Scope of Present Work

Appendix

Artificial Neural Network Evolution: Learning to Steer a Land Vehicle

Overview

Introduction to Artificial Neural Networks

Introduction to ALVINN

The Evolutionary Approach

Task Specifics

Implementation and Results

Conclusions

Future Directions

Locating Putative Protein Signal Sequences

Introduction

Implementation

Results of Sample Applications

Parametrization Study

Future Directions

Selection Methods for Evolutionary Algorithms

Fitness Proportionate Selection (FPS)

Windowing

Sigma Scaling

Linear Scaling

Sampling Algorithms

Ranking

Linear Ranking

Exponential Ranking

Tournament Selection

Genitor or Steady State Models

Evolution Strategy and Evolutionary Programming Methods

Evolution Strategy Approaches

Top-n Selection

Evolutionary Programming Methods

The Effects of Noise

Conclusions

References

Parallel Cooperating Genetic Algorithms: An Application to Robot Motion Planning

Introduction

Principles of Genetic Algorithms

The Search Algorithm

The Explore Algorithm

The Ariadne’s CLEW Algorithm

Parallel Implementation

Conclusion, Results, and Perspective

The Boltzmann Selection Procedure

Introduction

Empirical Analysis

Introduction to Boltzmann Selection

Theoretical Analysis

Discussion and Related Work

Conclusion

Structure and Performance of Fine-Grain Parallelism in Genetic Search

Introduction

Three Fine


Chambers, Lance D.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.