Algorithm Architecture and Implementation
Buch, Englisch, 690 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 13175 g
ISBN: 978-3-319-45170-1
Verlag: Springer International Publishing
This book explores recursive architectures in designing progressive hyperspectral imaging algorithms. In particular, it makes progressive imaging algorithms recursive by introducing the concept of Kalman filtering in algorithm design so that hyperspectral imagery can be processed not only progressively sample by sample or band by band but also recursively via recursive equations. This book can be considered a companion book of author’s books, Real-Time Progressive Hyperspectral Image Processing, published by Springer in 2016.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
Weitere Infos & Material
Chapter 1: Overview and Introduction
PART I: Fundamentals
Chapter 2: Simplex Volume Calculation
Chapter 3: Discrete Time Kalman Filtering in Hyperspectral Data Prcoessing
Chapter 4: Target-Specified Virtual Dimesnionality
PART II: Sample Spectral Statistics-Based Recursive Hyperspectral Sample Prcoessing
Chapter 5: Real Time Recursive Hyperspectral Sample Processing of Constrained Energy Minimization
Chapter 6: Real Time Recursive Hyperspectral Sample Processing of Anomaly Detection
PART III: Signature Spectral Statistics-Based Recursive Hyperspectral Sample Prcoessing
Chapter 7: Recursive Hyperspectral Sample Processing of Automatic Target Generation Process
Chapter 8: Recursive Hyperspectral Sample Processing of Orthogonal Subspace Projection
Chapter 9: Recursive Hyperspectral Sample Processing of Linear Spectral Mixture Analysis
Chapter 10: Recursive Hyperspectral Sample Processing of Maximimal Likelihood Estimation
Chapter 11: Recursive Hyperspectral Sample Processing of Orthogonal Projection-Based Simplex Growing Algorithm
Chapter 12: Recursive Hyperspectral Sample Processing of Geometric Simplex Growing Simplex Algorithm
PART IV: Sample Spectral Statistics-Based Recursive Hyperspectral Band Prcoessing
Chapter 13: Recursive Hyperspectral Band Processing of Constrained Energy Minimization
Chapter 14: Recursive Hyperspectral Band Processing of Anomly Detection
PART V: Signature Spectral Statistics-Based Recursive Hyperspectral Band Prcoessing
Chapter 15: Recursive Hyperspectral Band Processing of Automatic Target Generation Process
Chapter 16: Recursive Hyperspectral Band Processing of Orthogonal Subspce Projection
Chapter 17: Recursive Hyperspectral Band Processing of Linear Spectral Mixture Analysis
Chapter 18: Recursive Hyperspectral Band Processing of Growing Simplex Volume Analysis
Chapter 19: Recursive Hyperspectral Band Processing of Iterative Pixel Puirty Index
Chapter 20: Recursive Hyperspectral Band Processing of Fast Iterative Pixel Purity Index
Chapter 21: Conclusions
GlossaryAppendix AReferencesIndex




