Buch, Englisch, 434 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 846 g
Nonlinear Oscillations and Global Attractors
Buch, Englisch, 434 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 846 g
Reihe: Springer Monographs in Mathematics
ISBN: 978-3-030-34291-3
Verlag: Springer International Publishing
This book emphasizes those topological methods (of dynamical systems) and theories that are useful in the study of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II.
The author gives a systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics. They show how these diverse topics are connected to other important parts of mathematics, including Topology, Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional differential equations and partial difference equations).
The primary readership includes graduate and PhD students and researchers inin the field of dynamical systems and their applications (control theory, economic dynamics, mathematical theory of climate, population dynamics, oscillation theory etc).Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
Weitere Infos & Material
Almost Periodic Motions of Dynamical Systems.- Compact Global Attractors.- Analytical Dissipative Systems.- Almost Periodic Solutions of Linear Differential Equations.- Almost Periodic Solutions of Monotone Differential Equations.- Gradient-Like Dynamical Systems.