Chen / Lonardi | Biological Data Mining | E-Book | sack.de
E-Book

Chen / Lonardi Biological Data Mining


1. Auflage 2009
ISBN: 978-1-4200-8685-0
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 733 Seiten

Reihe: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series

ISBN: 978-1-4200-8685-0
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Like a data-guzzling turbo engine, advanced data mining has been powering post-genome biological studies for two decades. Reflecting this growth, Biological Data Mining presents comprehensive data mining concepts, theories, and applications in current biological and medical research. Each chapter is written by a distinguished team of interdisciplinary data mining researchers who cover state-of-the-art biological topics.

The first section of the book discusses challenges and opportunities in analyzing and mining biological sequences and structures to gain insight into molecular functions. The second section addresses emerging computational challenges in interpreting high-throughput Omics data. The book then describes the relationships between data mining and related areas of computing, including knowledge representation, information retrieval, and data integration for structured and unstructured biological data. The last part explores emerging data mining opportunities for biomedical applications.

This volume examines the concepts, problems, progress, and trends in developing and applying new data mining techniques to the rapidly growing field of genome biology. By studying the concepts and case studies presented, readers will gain significant insight and develop practical solutions for similar biological data mining projects in the future.

Chen / Lonardi Biological Data Mining jetzt bestellen!

Zielgruppe


Researchers, graduate students, and practitioners in data mining, machine learning, computational biology, and bioinformatics; life scientists and biologists.

Weitere Infos & Material


SEQUENCE, STRUCTURE, AND FUNCTION
Consensus Structure Prediction for RNA Alignments
Junilda Spirollari and Jason T.L. Wang

Invariant Geometric Properties of Secondary Structure Elements in Proteins
Matteo Comin, Concettina Guerra, and Giuseppe Zanotti

Discovering 3D Motifs in RNA
Alberto Apostolico, Giovanni Ciriello, Christine E. Heitsch, and Concettina Guerra

Protein Structure Classification Using Machine Learning Methods
Yazhene Krishnaraj and Chandan Reddy

Protein Surface Representation and Comparison: New Approaches in Structural Proteomics
Lee Sael and Daisuke Kihara

Advanced Graph Mining Methods for Protein Analysis
Yi-Ping Phoebe Chen, Jia Rong, and Gang Li

Predicting Local Structure and Function of Proteins
Huzefa Rangwala and George Karypis
GENOMICS, TRANSCRIPTOMICS, AND PROTEOMICS
Computational Approaches for Genome Assembly Validation
Jeong-Hyeon Choi, Haixu Tang, Sun Kim, and Mihai Pop

Mining Patterns of Epistasis in Human Genetics
Jason H. Moore

Discovery of Regulatory Mechanisms from Gene Expression Variation by eQTL Analysis
Yang Huang, Jie Zheng, and Teresa M. Przytycka

Statistical Approaches to Gene Expression Microarray Data Preprocessing
Megan Kong, Elizabeth McClellan, Richard H. Scheuermann, and Monnie McGee

Application of Feature Selection and Classification to Computational Molecular Biology
Paola Bertolazzi, Giovanni Felici, and Giuseppe Lancia

Statistical Indices for Computational and Data-Driven Class Discovery in Microarray Data
Raffaele Giancarlo, Davide Scaturro, and Filippo Utro

Computational Approaches to Peptide Retention Time Prediction for Proteomics
Xiang Zhang, Cheolhwan Oh, Catherine P. Riley, Hyeyoung Cho, and Charles Buck
FUNCTIONAL AND MOLECULAR INTERACTION NETWORKS
Inferring Protein Functional Linkage Based on Sequence Information and Beyond
Li Liao

Computational Methods for Unraveling Transcriptional Regulatory Networks in Prokaryotes
Dongsheng Che and Guojun Li

Computational Methods for Analyzing and Modeling Biological Networks
Nataša Pržulj and Tijana Milenkovic

Statistical Analysis of Biomolecular Networks
Jing-Dong J. Han and Chris J. Needham
LITERATURE, ONTOLOGY, AND KNOWLEDGE INTEGRATION
Beyond Information Retrieval: Literature Mining for Biomedical Knowledge Discovery
Javed Mostafa, Kazuhiro Seki, and Weimao Ke

Mining Biological Interactions from Biomedical Texts for Efficient Query Answering
Muhammad Abulaish, Lipika Dey, and Jahiruddin

Ontology-Based Knowledge Representation of Experiment Metadata in Biological Data Mining
Richard H. Scheuermann, Megan Kong, Carl Dahlke, Jennifer Cai, Jamie Lee, Yu Qian, Burke Squires, Patrick Dunn, Jeff Wiser, Herb Hagler, Barry Smith, and David Karp

Redescription Mining and Applications in Bioinformatics
Naren Ramakrishnan and Mohammed J. Zaki
GENOME MEDICINE APPLICATIONS
Data Mining Tools and Techniques for Identification of Biomarkers for Cancer
Mick Correll, Simon Beaulah, Robin Munro, Jonathan Sheldon, Yike Guo, and Hai Hu

Cancer Biomarker Prioritization: Assessing the in vivo Impact of in vitro Models by in silico Mining of Microarray Database, Literature, and Gene Annotation
Chia-Ju Lee, Zan Huang, Hongmei Jiang, John Crispino, and Simon Lin

Biomarker Discovery by Mining Glycomic and Lipidomic Data
Haixu Tang, Mehmet Dalkilic, and Yehia Mechref

Data Mining Chemical Structures and Biological Data
Glenn J. Myatt and Paul E. Blower


Jake Y. Chen is an assistant professor of informatics at Indiana University, an assistant professor of computer science at Purdue University, and director of the Indiana Center for Systems Biology and Personalized Medicine.

Stefano Lonardi is an associate professor of computer science and engineering at the University of California, Riverside.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.