Chen | Revolutionizing Drug Development | Buch | 978-0-443-34059-8 | www.sack.de

Buch, Englisch, 230 Seiten, Format (B × H): 191 mm x 235 mm

Chen

Revolutionizing Drug Development

Harnessing AI and Computational Biology
Erscheinungsjahr 2026
ISBN: 978-0-443-34059-8
Verlag: Elsevier Science

Harnessing AI and Computational Biology

Buch, Englisch, 230 Seiten, Format (B × H): 191 mm x 235 mm

ISBN: 978-0-443-34059-8
Verlag: Elsevier Science


Revolutionizing Drug Development: Harnessing AI and Computational Biology presents cutting-edge artificial intelligence (AI) tools, such as machine- and deep-learning models and generative AI, to assist structure-based drug design and clinical trial design and integrate with drug development programs. This book summarizes technical advancements of AI-based technologies and computational biology approaches, highlighting their applications in developing new drugs through discovery, repurposing, and designing, for advancing R&D in the pharmaceutical industry and benefiting precision medicine. This book serves as an ideal reference for students, teachers, professors, and researchers in biological and biomedical sciences, particularly the topics related to bioinformatics, systems biology, pharmacology, and drug development. The readers can efficiently and precisely overview this burning field, which might inspire their future directions of research in drug development and AI-based digital biology.

Chen Revolutionizing Drug Development jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Artificial intelligence and accelerated computing in drug discovery: An updated overview
2. AI strategies for drug discovery and bioactivity prediction: Opportunities and challenges
3. AI technologies for drug repurposing: Methods and applications
4. Data science and databases in drug discovery: Technical development and applications
5. Graph neural networks for drug discovery: Protocols and applications
6. Deep learning and generative models for drug discovery: Techniques and current achievements
7. AI-enabled personalized medicine: Strategies and challenges
8. AI technologies for advancing R&D in the pharmaceutical industry: Current development and challenges
10. AI-powered drug development for treating neurological disorders
11. AI applications in drug discovery for promoting longevity
12. Transforming Drug Development with AI-driven Models
13. AI technologies for precision and personalized medicine
14. AI technologies for smart pharmacology
15. AI-powered Immunopharmacological strategies to combat inflammatory diseases
16. AI and nanotechnology for advancing drug development
17. Drug repositioning using tensor decomposition
18. Integrating Artificial Intelligence and machine learning technologies in antiviral drug discovery: Strategies and challenges
19. Artificial intelligence in the discovery of new antibiotics
20. AI-designed drugs: Clinical development and future directions


Chen, Jen-Tsung
Jen-Tsung Chen is a Professor of Cell Biology at the National University of Kaohsiung in Taiwan. He teaches cell biology, genomics, proteomics, plant physiology, and plant biotechnology. His research spans bioactive compounds, chromatography techniques, plant molecular biology and biotechnology, bioinformatics, and systems pharmacology. An active book and journal editor, he serves on editorial boards and has guest-edited special issues for several international journals. Dr. Chen has authored and edited books with international publishers on diverse topics including drug discovery, herbal medicine, medicinal biotechnology, nanotechnology, bioengineering, plant functional genomics, plant speed breeding, CRISPR-based plant genome editing, and artificial intelligence. In 2023 and 2024, he was listed by Elsevier and Stanford University among the 'World's Top 2% Scientists' and also received the Springer Nature Editor of Distinction Award in 2025.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.