Chen | Statistical Regression Modeling with R | Buch | 978-3-030-67582-0 | sack.de

Buch, Englisch, 228 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 541 g

Reihe: Emerging Topics in Statistics and Biostatistics

Chen

Statistical Regression Modeling with R

Longitudinal and Multi-level Modeling
1. Auflage 2021
ISBN: 978-3-030-67582-0
Verlag: Springer International Publishing

Longitudinal and Multi-level Modeling

Buch, Englisch, 228 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 541 g

Reihe: Emerging Topics in Statistics and Biostatistics

ISBN: 978-3-030-67582-0
Verlag: Springer International Publishing


This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.
Chen Statistical Regression Modeling with R jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


1. Linear Regression.- 2. Introduction to Multi-Level Regression.- 3. Two-Level Multi-Level Modeling.- 4. Higher-Level Multi-Level Modeling.- 5. Longitudinal Data Analysis.- 6. Nonlinear Regression Modeling.- 7. Nonlinear Mixed-Effects Modeling.- 8. Generalized Linear Model.- 9. Generalized Multi-Level Model for Dichotomous Outcome.- 10.  Generalized Multi-Level Model for Counts Outcome.


Dr. Ding-Geng Chen is a fellow of the American Statistical Association and currently the Wallace H. Kuralt Distinguished Professor at the University of North Carolina at Chapel Hill. He was a professor in biostatistics at the University of Rochester and the Karl E. Peace Endowed Eminent Scholar Chair in biostatistics at Georgia Southern University. He is also a senior statistics consultant for biopharmaceutical organizations and government agencies with extensive expertise in Monte Carlo simulations, clinical trial biostatistics, and public health statistics. Dr. Chen has more than 200 professional publications, and he has coauthored/coedited 31 books on clinical trial methodology, meta-analysis, data sciences, Monte Carlo simulation-based statistical modeling, and public health applications. He has been invited nationally and internationally to give speeches on his research.

Ms. Jenny K. Chen graduated with a master's degree from the Department of Statistics and Data Science at Cornell University. She is currently working as a financial analyst at Morgan Stanley (Midtown New York Office) for their Wealth Management division. Previously, Jenny worked as a product manager for Google, where she led a team of data scientists to develop several prediction algorithms for the 2019 NCAA March Madness Basketball Tournament. She has published several research papers in statistical modeling and data analytics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.