E-Book, Englisch, 156 Seiten, eBook
Reihe: Computer Science
Chen / Zhang / Wu Energy Efficient Computation Offloading in Mobile Edge Computing
1. Auflage 2022
ISBN: 978-3-031-16822-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 156 Seiten, eBook
Reihe: Computer Science
ISBN: 978-3-031-16822-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Researchers working in mobile edge computing, task offloading and resource management, as well as advanced level students in electrical and computer engineering, telecommunications, computer science or other related disciplines will find this book useful as a reference. Professionals working within these related fields will also benefit from this book.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Introduction
1.1 Background
1.1.1 Mobile Cloud Computing
1.1.2 Mobile Edge Computing
1.1.3 Computation Offloading
1.2 Challenges
1.3 Contributions
1.4 Book Outline
References
2 Dynamic Computation Offloading for Energy Efficiency in Mobile
Edge Computing
2.1 System Model and Problem Statement
2.1.1 Network Model
2.1.2 Task Offloading Model
2.1.3 Task Queuing Model
2.1.4 Energy Consumption Model
2.1.5 Problem Statement
2.2 EEDCO: Energy Efficient Dynamic Computing Offloading for
Mobile Edge Computing
2.2.1 Joint Optimization of Energy and Queue
2.2.2 Dynamic Computation Offloading for Mobile Edge
Computing
2.2.3 Trade-off Between Queue Backlog and Energy Efficiency
2.2.4 Convergence and Complexity Analysis
2.3 Performance Evaluation
2.3.1 Impacts of Parameters
2.3.2 Performance Comparison with EA and QW Schemes
2.4 Literature Review
2.5 Summary
References
ix
x Contents3 Energy Efficient Offloading and Frequency Scaling for Internet of
Things Devices
3.1 System Model and Problem Formulation
3.1.1 Network Model
3.1.2 Task Model
3.1.3 Queuing Model
3.1.4 Energy Consumption Model
3.1.5 Problem Formulation
3.2 COFSEE:Computation Offloading and Frequency Scaling for
Energy Efficiency of Internet of Things Devices
3.2.1 Problem Transformation
3.2.2 Optimal Frequency Scaling
3.2.3 Local Computation Allocation
3.2.4 MEC Computation Allocation
3.2.5 Theoretical Analysis
3.3 Performance Evaluation
3.3.1 Impacts of System Parameters
3.3.2 Performance Comparison with RLE,RME and TS Schemes
3.4 Literature Review
3.5 Summary
References
4 Deep Reinforcement Learning for Delay-aware and Energy-Efficient
Computation Offloading
4.1 System Model and Problem formulation
4.1.1 System Mode
4.1.2 Problem Formulation4.2 Proposed DRL Method
4.2.1 Data prepossessing
4.2.2 DRL Model4.2.3 Training
4.3 Performance Evaluation
4.4 Literature Review4.5 Summary
References
5 Energy-Efficient Multi-task Multi-access Computation Offloading
via NOMA
5.1 System Model and Problem Formulation
5.1.1 Motivation5.1.2 System Model
5.1.3 Problem Formulation
5.2 LEEMMO: Layered Energy-efficient Multi-task Multi-accessAlgorithm
5.2.1 Layered Decomposition of Joint Optimization Problem
Contents xi5.2.2 Proposed Subroutine for Solving Problem (TEM-E-Sub)
5.2.3 A Layered Algorithm for Solving Problem (TEM-E-Top)
5.2.4 DRL-based Online Algorithm5.3 Performance Evaluation
5.3.1 Impacts of Parameters
5.3.2 Performance Comparison with FDMA based OffloadingSchemes
5.4 Literature Review
5.5 SummaryReference
6 Conclusion
6.1 Concluding Remarks6.2 Future Directions
References




