E-Book, Englisch, 223 Seiten
Chidambaram / Saxena Relay Tuning of PID Controllers
1. Auflage 2018
ISBN: 978-981-10-7727-2
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
For Unstable MIMO Processes
E-Book, Englisch, 223 Seiten
Reihe: Advances in Industrial Control
ISBN: 978-981-10-7727-2
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents comprehensive information on the relay auto-tuning method for unstable systems in process control industries, and introduces a new, refined Ziegler-Nichols method for designing controllers for unstable systems. The relay auto-tuning method is intended to assist graduate students in chemical, electrical, electronics and instrumentation engineering who are engaged in advanced process control. The book's main focus is on developing a controller tuning method for scalar and multivariable systems, particularly for unstable processes. It proposes a much simpler technique, avoiding the shortcomings of the popular relay-tuning method. The effects of higher-order harmonics are incorporated, owing to the shape of output waveforms. In turn, the book demonstrates the applicability and effectiveness of the Ziegler-Nichols method through simulations on a number of linear and non-linear unstable systems, confirming that it delivers better performance and robust stability in the presence of uncertainty. The proposed method can also be easily implemented across industries with the help of various auto-tuners available on the market. Offering a professional and modern perspective on profitably and efficiently automating controller tuning, the book will be of interest to graduate students, researchers, and industry professionals alike.
M. Chidambaram is currently a Professor at the Department of Chemical Engineering, Indian Institute of Technology in Madras, Chennai. After completing his PhD at the Indian Institute of Science in Bangalore he served as a faculty member at the Indian Institute of Technology Bombay, Mumbai, from 1984 to 1991. Since then he has been a faculty member at the Indian Institute of Technology in Madras. He has also served the institute as Head of the Department of Chemical Engineering from 2000 to 2003 and as the Director, National Institute of Technology (NIT), Tiruchirappalli from 2005 to 2010. He has 190 journal articles, 7 books and 4 book chapters to his credit. His primary research interest is in the area of process control. 'Nikita Saxena completed her PhD' under the guidance of Prof. M Chidambaram. She completed her degree (BTech) in Chemical Technology at Harcourt Butler Technical Institute (HBTI), Kanpur. She also has a year of experience in the fast-moving consumer goods (FMCG) industry. She has authored 4 journal articles and presented papers at several conferences. Her areas of interest include relay control systems and model identification.
Autoren/Hrsg.
Weitere Infos & Material
1;Series Editors’ Foreword;7
2;Preface;9
3;Acknowledgement;11
4;Contents;12
5;About the Authors;16
6;Abbreviations and Notations;17
7;List of Figures;19
8;List of Tables;24
9;1 Introduction;28
9.1;1.1 Scope of Process Control;28
9.2;1.2 Proportional–Derivative–Integral Control;29
9.3;1.3 Loop Tuning;30
9.3.1;1.3.1 Manual Loop Tuning;31
9.3.2;1.3.2 Ziegler–Nichols Method (1942);31
9.3.3;1.3.3 Refined Ziegler–Nichols Methods;32
9.3.4;1.3.4 Process Reaction Curve Method;33
9.3.5;1.3.5 Cohen–Coon Method (1953);34
9.3.6;1.3.6 Synthesis Method;35
9.4;1.4 Relay Feedback Method;35
9.5;1.5 Real-Time Example;37
9.6;1.6 Conclusion;38
9.7;References;38
10;2 Relay Control System;40
10.1;2.1 Relay Control System;40
10.2;2.2 Describing Function Analysis;42
10.3;2.3 Shape of the Relay Waveform;44
10.4;2.4 Relay Auto-tuning for Scalar System;45
10.4.1;2.4.1 Modified Relay Feedback Method—Sung et al. (1995);47
10.4.2;2.4.2 Modified Fourier Series Analysis of Process Response—Srinivasan and Chidambaram (2004);48
10.4.3;2.4.3 Use of Preload Relay—Tan et al. (2006);49
10.4.4;2.4.4 Enhanced Process Activation Method—Je et al. (2009);50
10.4.5;2.4.5 Simulation Study;51
10.5;2.5 Tuning of Multivariable System;52
10.5.1;2.5.1 Pairing Criteria;55
10.5.2;2.5.2 Controller Design Using Independent Tuning Method;56
10.6;2.6 Relay Feedback Test for Multivariable System;61
10.6.1;2.6.1 Condition for Limit Cycle to Occur;62
10.6.2;2.6.2 Relay Auto-tuning of Decentralized Controllers;63
10.6.2.1;2.6.2.1 Palmor et al. (1995);63
10.6.2.2;2.6.2.2 Zhuang and Atherton (1994);65
10.6.2.3;2.6.2.3 Campestrini et al. (2009);66
10.6.3;2.6.3 Relay Auto-tuning of Centralized Controllers;67
10.6.3.1;2.6.3.1 Menani and Koivo (1996c);67
10.6.3.2;2.6.3.2 Wang et al. (1997);68
10.6.3.3;2.6.3.3 Menani (1999);70
10.7;2.7 Design of PID Controllers;70
10.8;2.8 Robust Stability Analysis;72
10.9;2.9 Conclusion;77
10.10;References;77
11;3 Auto-Tuning of Unstable SOPTD Systems;79
11.1;3.1 Introduction;79
11.2;3.2 Consideration of Higher Order Harmonics;80
11.2.1;3.2.1 Problem 1;80
11.2.1.1;3.2.1.1 Limiting Case;81
11.2.2;3.2.2 Problem 2;83
11.2.3;3.2.3 Problem 3;85
11.3;3.3 Measure of Robust Performance;85
11.4;3.4 Design Procedure;86
11.4.1;3.4.1 Tuning Rule;86
11.4.2;3.4.2 Simple Method to Calculate Kc,Min;87
11.5;3.5 Simulation Studies;88
11.5.1;3.5.1 Example 1;88
11.5.1.1;3.5.1.1 Effect of Measurement Noise;90
11.5.2;3.5.2 Example 2;91
11.5.3;3.5.3 Example 3;92
11.5.4;3.5.4 Example 4: Unstable Nonlinear Bioreactor;95
11.5.5;3.5.5 Effect of Noise on Relay Output;99
11.6;3.6 Conclusions;99
11.7;References;100
12;4 Decentralized PID Controllers for Stable Systems;101
12.1;4.1 Introduction;101
12.2;4.2 Design Procedure;103
12.3;4.3 Simulation Studies on Stable Systems;104
12.3.1;4.3.1 Example 1;104
12.3.1.1;4.3.1.1 The Effect of Measurement Noise on Stable System;107
12.3.2;4.3.2 Example 2;110
12.3.3;4.3.3 Example 3;112
12.3.4;4.3.4 Example 4;115
12.4;4.4 Conclusions;117
12.5;References;118
13;5 Decentralized PID Controllers for Unstable Systems;119
13.1;5.1 Introduction;119
13.2;5.2 Design Procedure;120
13.3;5.3 Simulation Studies of Unstable Systems;121
13.3.1;5.3.1 Example 1;121
13.3.1.1;5.3.1.1 Calculation of Kc,Min;122
13.3.1.2;5.3.1.2 Calculation of Kc,max;122
13.3.2;5.3.2 Example 2;127
13.3.2.1;5.3.2.1 Calculation of Kc,min;127
13.3.2.2;5.3.2.2 Calculation of Kc,max;128
13.3.3;5.3.3 Example 3;131
13.3.3.1;5.3.3.1 Calculation of Kc,min;131
13.3.3.2;5.3.3.2 Calculation of Kc,max;131
13.4;5.4 Conclusion;136
13.5;References;136
14;6 Centralized PID Controllers for Unstable System;138
14.1;6.1 Introduction;138
14.2;6.2 Controllers Design;139
14.3;6.3 Robustness Analysis;141
14.4;6.4 Simulations Studies on Unstable Systems;142
14.4.1;6.4.1 Example 1;142
14.4.2;6.4.2 Example 2;146
14.5;6.5 Conclusions;150
14.6;References;151
15;7 Refined Ziegler–Nichols Tuning Method for Unstable SISO Systems;152
15.1;7.1 Introduction;152
15.2;7.2 Controller Design Method;153
15.3;7.3 Simulation Studies;154
15.3.1;7.3.1 Example 1;154
15.3.2;7.3.2 Example 2;156
15.3.3;7.3.3 Example 3;160
15.3.4;7.3.4 Example 4;163
15.3.5;7.3.5 Example 5;166
15.4;7.4 Improved Relay Tuning Method;169
15.5;7.5 Comparison With the Recent Method;173
15.6;7.6 Conclusions;174
15.7;References;174
16;8 Tuning Rules for PID Controllers for Unstable Systems;176
16.1;8.1 Controller Design Method for Unstable FOPTD System Based on System Parameters;176
16.1.1;8.1.1 Example 1;180
16.2;8.2 Controller Design for Unstable System Based on Ultimate Values;180
16.2.1;8.2.1 Case 1;182
16.2.2;8.2.2 Comparison with Other Methods;184
16.3;8.3 Conclusions;190
16.4;References;190
17;9 Auto-tuning of Decentralized Unstable System With Refined ZN Method;191
17.1;9.1 Introduction;191
17.2;9.2 Controllers Design;191
17.3;9.3 Simulation Studies;194
17.3.1;9.3.1 Example 1;194
17.3.2;9.3.2 Example 2;200
17.4;9.4 Conclusions;205
17.5;Reference;206
18;Appendix A;207
19;Appendix B;209
20;Improved Continuous Cycling Method for Stable FOPTD System;209
21;Appendix C;216
22;CODE 1: MATLAB Code for Determining the Minimum and Maximum Value of Controller Gain;216
23;CODE II: MATLAB Code for Determining the Updated Minimum and Maximum Value of Controller Gain;218
24;Appendix D;219
25;Simulink Diagrams;219
26;Index;222




