Chow | Stochastic Partial Differential Equations | Buch | 978-0-367-45312-1 | sack.de

Buch, Englisch, 281 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 413 g

Chow

Stochastic Partial Differential Equations


1. Auflage 2019
ISBN: 978-0-367-45312-1
Verlag: CRC Press

Buch, Englisch, 281 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 413 g

ISBN: 978-0-367-45312-1
Verlag: CRC Press


As a relatively new area in mathematics, stochastic partial differential equations (PDEs) are still at a tender age and have not yet received much attention in the mathematical community. Filling the void of an introductory text in the field, Stochastic Partial Differential Equations introduces PDEs to students familiar with basic probability theory and Itô's equations, highlighting several computational and analytical techniques.

Without assuming specific knowledge of PDEs, the text includes many challenging problems in stochastic analysis and treats stochastic PDEs in a practical way. The author first brings the subject back to its root in classical concrete problems. He then discusses a unified theory of stochastic evolution equations and describes a few applied problems, including the random vibration of a nonlinear elastic beam and invariant measures for stochastic Navier-Stokes equations. The book concludes by pointing out the connection of stochastic PDEs to infinite-dimensional stochastic analysis.

By thoroughly covering the concepts and applications of stochastic PDEs at an introductory level, this text provides a guide to current research topics and lays the groundwork for further study.

Chow Stochastic Partial Differential Equations jetzt bestellen!

Zielgruppe


Academic and Professional Practice & Development


Autoren/Hrsg.


Weitere Infos & Material


Preface. Preliminaries. Scalar Equations of First Order. Stochastic Parabolic Equations. Stochastic Parabolic Equations in the Whole Space. Stochastic Hyperbolic Equations. Stochastic Evolution Equations in Hilbert Spaces. Asymptotic Behavior of Solutions. Further Applications. Diffusion Equations in Infinite Dimensions. References. Index.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.